DOI: 10.17586/1023-5086-2020-87-08-12-20
УДК: 621.039.546
High-power short-pulse solid-state microlaser with segmented diode pumping
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Мамонов Д.Н, Климентов С.М., Державин С.И., Тимошкин В.Н., Кравченко Я.В., Карпов Н.В. Мощный короткоимпульсный твёрдотельный микролазер с сегментированной диодной накачкой // Оптический журнал. 2020. Т. 87. № 8. С. 12–20. http://doi.org/10.17586/1023-5086-2020-87-08-12-20
Mamonov D.N., Klimentov S.M., Derzhavin S.I., Timoshkin V.N., Kravchenko Ya.V., Karpov N.V. High-power short-pulse solid-state microlaser with segmented diode pumping[in Russian] // Opticheskii Zhurnal. 2020. V. 87. № 8. P. 12–20. http://doi.org/10.17586/1023-5086-2020-87-08-12-20
D. N. Mamonov, S. M. Klimentov, S. I. Derzhavin, V. N. Timoshkin, Ya. V. Kravchenko, and N. V. Karpov, "High-power short-pulse solid-state microlaser with segmented diode pumping," Journal of Optical Technology. 87(8), 459-464 (2020). https://doi.org/10.1364/JOT.87.000459
In this study, the mechanism of pulse generation is investigated in a compact laser system based on YAG:Nd3+ with passive Q-switching, which utilizes segmented pumping of the active medium by seven quasicontinuous laser diodes with fiber-optic radiation outputs. The dependence of lasing on the individual and correlative properties of pumping channels is studied in general and upon disabling one or several pumping channels. The maximum output emission energy achieved is 20 mJ for a synchronous pulse with a duration of 3.3 ns. The possibility of obtaining a stable optical breakdown of air using the developed laser is experimentally confirmed, facilitating its practical application in, for example, the ignition of combustible mixtures.
solid hotel laser, longitudinal diode pumping, segmented pumping, Q-factor modulation, optical air breakdown
OCIS codes: 140.3580, 140.5560, 140.3540, 140.3440
References:1. D. N. Mamonov, S. M. Klimentov, S. I. Derzhavin, and Ya. V. Kravchenko, “Generation dynamics of coupled pulses from a single active element of the end-pumped solid-state laser: experiment and simulation,” Phys.Wave Phenom. 26(3), 214–220 (2018).
2. D. N. Mamonov, N. N. Il’ichev, A. A. Sirotkin, P. A. Pivovarov, S. G. Rebrov, S. I. Derzhavin, and S. M. Klimentov, “High-power compact laser with segmented longitudinal pumping of coupled laser channels,” Quantum Electron. 45(6), 508–510 (2015).
3. M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively-switched microlaser for ignition of engines,” Quantum Electron. 46(2), 277–284 (2010).
4. R. Bhandari and T. Taira, “>6 MW peak power at 532 nm from passively Q-switched Nd:YAG/Cr:YAG microchip laser,” Opt. Express 19(20), 19135–19141 (2011).
5. G. Kroupa, E. Winkelhofer, and G. Franz, “Novel miniaturized highenergy Nd-YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).
6. N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
7. L. Fabiny, P. Colet, R. Roy, and D. Lenstra, “Coherence and phase dynamics of spatially coupled solid-state lasers,” Phys. Rev. A 47(5), 4287 (1993).
8. H. Laabs and B. Ozygus, “The influence of transverse structures on the coupling of solid-state lasers,” Opt. Laser Technol. 29(7), 401–406 (1997).
9. V. Zehnle, “Theoretical model for coupled solid-state lasers,” Phys. Rev. A 62(3), 033814 (2000).
10. M. Möller, B. Forsmann, and M. Jansen, “Dynamics of three coupled Nd:YVO4 microchip lasers,” J. Opt. B: Quantum Semiclassical Opt. 2(3), 371 (2000).