DOI: 10.17586/1023-5086-2020-87-08-03-11
УДК: 535.4
Curvilinear fiber-optic deformation sensor with a distributed Bragg grating embedded in the polymer composite
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Паньков А.А. Криволинейный оптоволоконный датчик деформаций с распределённой брэгговской решёткой в структуре полимерного композита // Оптический журнал. 2020. Т. 87. № 8. С. 3–11. http://doi.org/10.17586/1023-5086-2020-87-08-03-11
Pan’kov А.A. Curvilinear fiber-optic deformation sensor with a distributed Bragg grating embedded in the polymer composite [in Russian] // Opticheskii Zhurnal. 2020. V. 87. № 8. P. 3–11. http://doi.org/10.17586/1023-5086-2020-87-08-03-11
A. A. Pan’kov, "Curvilinear fiber-optic deformation sensor with a distributed Bragg grating embedded in the polymer composite," Journal of Optical Technology. 87(8), 452-458 (2020). https://doi.org/10.1364/JOT.87.000452
A mathematical model of a fiber-optic deformation sensor is developed to model the sensing segment of an optical fiber with a distributed Bragg grating in the form of a cylindrical spiral coil with a constant or gradient angle of elevation. The sensing optical fiber coil is embedded either in the tested local area of the uniform material or the local area of the composite material on the surface of the supporting or reinforcing composite filament. The sensing optical fiber coil determines the bulk deformation state in the local area of the material in the vicinity of the sensing coil. The function of the density of the distribution of axial deformations along the sensing spiral coil is obtained by solving the Fredholm integral equation of the first kind from the measured reflection coefficient spectrum and by using the deformations in the area containing the embedded sensor. The results of the numerical simulation of the reflection coefficient spectra and the deformation distribution densities are presented for different parameters of the sensing spiral coil. The model can be used to test complex bulk deformations of uniform and unidirectional fiber composite areas.
fiber, Bragg diffraction grating, distributed sensor, deformation diagnostics, Fredholm integral equation, numerical modeling
OCIS codes: 050.1950, 050.2770
References:1. J. Fraden, Handbook of Modern Sensors (Tekhnosfera, Moscow, 2005).
2. L. G. Etkin, Vibration Sensors: Theory and Applications (N. E. Bauman MGTU Publishing, Moscow, 2004).
3. A. N. Anoshkin, A. F. Sal’nikov, V. M. Osokin, A. A. Tret’yakov, G. S. Luzin, N. N. Potrakhov, and V. B. Bessonov, “Nondestructive monitoring of products made of polymer composite materials,” in Proceedings of the IV Russian Scientific Practical Conference of X-ray Equipment Manufacturers (2017), pp. 85–90.
4. E. D. Kartashova and A. Yu. Muyzemnek, “Technological defects of polymeric layered composite materials,” Izv. Vyssh. Uchebn. Zaved. Polvolzh. Reg. Tekh. Nauki (2), 79–89 (2017).
5. V. A. Troitskii, M. N. Karmanov, and N. V. Troitskaya, “Nondestructive quality control of composite materials,” Tekh. Diagn. Nerazrushayuschchii Kontrol (3), 29–33 (2014).
6. V. A. Meheda, Tensometric Method of Deformation Measurement (Samara State Aerospace University Publishing, Samara, 2011).
7. M. F. Tomilov and F. Kh. Tomilov, “Method for deformation measurement,” Russian patent 2537105 (2013).
8. N. I. Bayurova and V. A. Zorin, “Method of diagnostics of the structure state,” Russian patent 2539106 (2013).
9. M. P. Khamner and R. F. Malligan, “Pressure-sensitive material,” Russian patent 2335511 (2003).
10. N. Yu. Makarova and B. I. Shakhtarin, “Stress-stain state monitoring system of composite structures with mechanoluminescent sensors,” Nauchn. Vestn. MGTU GA 20, 152–160 (2017).
11. U. E. Krauya and Ya. L. Yansons, Mechanoluminescence of Composite Materials: Methods, Equipment, and Investigation Results (Zinatne, Riga, 1990).
12. Y. Jia, X. Tian, Z. Wu, X. Tian, J. Zhou, Y. Fang, and C. Zhu, “Novel mechano-luminescent sensors based on piezoelectric/ electroluminescent composites,” Sensors 11(4), 3962–3969 (2011).
13. A. A. Pan’kov, “Piezoelectroluminescent fiber-optic sensors for temperature and deformation fields,” Sens. Actuators A 288, 171–176 (2019).
14. S. Tati and Kh. Kadzimoto, “Optical tactile sensor,” Russian patent 2263885 (2001).
15. O. V. Dikov, S. A. Savonin, V. I. Kachula, O. A. Perepelitsyna, and V. P. Ryabukho, “Digital holographic interferometry of microdeformations of the scattering objects,” Izv. Sar. Univ. Ser. Fiz. 12(1), 12–17 (2012).
16. R. A. Kuznetsov, “Development of a system for nondestructive monitoring based on digital holographic interferometry,” Ph.D. thesis (Novosibirsk State Technical University Publishing, Novosibirsk, 2013).
17. K. V. Sorokin and V. V. Murashov, “Global trends in the development of distributed fiber-optic sensor systems (Review),” Aviats. Mater. Tekhnol. (3), 90–94 (2015).
18. A. A. Pan’kov, “Method for deformation measurement,” Patent application 2019136251 (2019).
19. A. A. Pan’kov, “Mathematical model for diagnosing strains by an optical fiber-sensor with a distributed Bragg grating according to the solution of a Fredholm integral equation,” Mech. Compos. Mater. 54(4), 513–522 (2018).
20. A. A. Pan’kov, “Mathematical model for determining the microporosity of materials using a fiber-optic sensor with a distributed Bragg grating,” J. Opt. Technol. 87(4), 193–198 (2020) [Opt. Zh. 87(4), 3–10 (2020)].
21. R. Christensen, Introduction to Composite Mechanics (Mir, Moscow, 1982).
22. B. E. Pobedrya, Mechanics of Composite Materials (Moscow University Publishing, Moscow, 1984).
23. S. D. Volkov and V. P. Stavrov, Statistical Mechanics of Composite Materials (Belarus State University Publishing, Minsk, 1978).
24. T. D. Shermergor, Theory of Micro-nonuniform Media Elasticity (Nauka, Moscow, 1976).
25. A. A. Pan’kov, Statistical Mechanics of Piezocomposites (Perm State Technical University Publishing, Perm, 2009).
26. A. A. Pan’kov, “Piezoactive unidirectionally fibrous polydisperse composite,” Mech. Compos. Mater. 48(6), 603–610 (2012).