DOI: 10.17586/1023-5086-2020-87-09-12-23
УДК: 535.36
Real-time models of pulsed reflectance profiles of 3D objects in a monostatic laser location system
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Лабунец Л.В., Борзов А.Б., Ахметов И.М. Модели реального времени импульсных отражательных характеристик 3D объектов в однопозиционной системе лазерной локации // Оптический журнал. 2020. Т. 87. № 9. С. 12–23. http://doi.org/10.17586/1023-5086-2020-87-09-12-23
Labunets L.V., Borzov A.B., Akhmetov I.M. Real-time models of pulsed reflectance profiles of 3D objects in a monostatic laser location system [in Russian] // Opticheskii Zhurnal. 2020. V. 87. № 9. P. 12–23. http://doi.org/10.17586/1023-5086-2020-87-09-12-23
L. V. Labunets, A. B. Borzov, and I. M. Akhmetov, "Real-time models of pulsed reflectance profiles of 3D objects in a monostatic laser location system," Journal of Optical Technology . 87(9), 513-520 (2020).
The cluster structure of the distance profile of an anthropogenic 3D object in a monostatic laser location system is investigated using a digital simulation method. A physically valid method for decomposing the pulsed reflectance profile of a target into continuous and discontinuous components is proposed. A real-time model for the structural components of the temporal profile of the pulsed reflectance profile of the object is realized based on a finite combination of standard pulses. The results of the identification of the parameters of a finite combination of standard pulses using a modified expectation-maximization algorithm are presented.
simulation digital modeling, 3D object range portrait, clustering, transient characteristic, effective scattering area, real-time model, final mixture of standard pulses, EM algorithm
OCIS codes: 290.5825, 290.5880
References:1. L. V. Labunets, Digital Models of Target Images and Signal Representations in Optical Location Systems (Bauman MSTU Publishing, Moscow, 2007).
2. L. V. Labunets, Real-Time Digital Modeling of Optical Reflectance Profiles of Targets (Bauman MSTU Publishing, Moscow, 2013).
3. L. V. Labunets and N. N. Anishchenko, “Structural analysis of transient characteristics of 3D objects in a monostatic optical location system,” J. Commun. Technol. Electron. 56(2), 145–159 (2011) [Radiotekh. Elektron. 56(2), 163–177 (2011)].
4. L. V. Labunets, D. S. Lukin, and A. A. Chervyakov, “Reconstruction of reflection characteristics of 3D objects in a monostatic optical location system,” J. Commun. Technol. Electron. 57(12), 1265–1275 (2012) [Radiotekh. Elektron. 57(12), 1289–1300 (2012)].
5. L. V. Labunets, A. B. Borzov, and I. M. Akhmetov, “Regularized parametric model of the angular distribution of the brightness factor of a rough surface,” J. Opt. Technol. 86(10), 618–626 (2019) [Opt. Zh. 86(10), 20–29 (2019)].
6. V. I. Glivenko, Stieltjes Integral (ONTI NKTP USSR, Moscow–Leningrad, 1936).
7. E. Martin, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for discovering clusters in large spatial databases with noise,” in Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96) (1996), pp. 226–231.
8. S. A. Aivazyan, I. S. Enyukov, and L. D. Meshalkin, Applied Statistics: Classification and Dimensionality Reduction (Finansy i Statistika, Moscow, 1989).
9. S. Haykin, Neural Networks: a Comprehensive Foundation, 2nd ed. (Prentice Hall, New York, 1999).
10. L. V. Labunets, “Randomization of multidimensional distributions in the Mahalanobis metric,” J. Commun. Technol. Electron. 45(10), 1093–1104 (2000) [Radiotekh. Elektron. 45(10), 1214–1225 (2000)].
11. F. N. Fritsch and R. E. Carlson, “Monotone piecewise cubic interpolation,” SIAM J. Numer. Anal. 17, 238–246 (1980).
12. D. H. McLain, “Drawing contours from arbitrary data points,” Comput. J. 17(4), 318–324 (1974).