DOI: 10.17586/1023-5086-2020-87-09-03-11
УДК: 535-15
Development of an algorithm for calculating the energy concentration of infrared optical systems taking into account the charge flow effect in a photodetector array
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Дрыгин Д.А., Острун А.Б. Разработка алгоритма расчета концентрации энергии инфракрасных оптических систем с учетом влияния эффекта перетекания зарядов на матричном фотоприемном устройстве // Оптический журнал. 2020. Т. 87. № 9. С. 3–11. http://doi.org/10.17586/1023-5086-2020-87-09-03-11
Drygin D.A., Ostrun A.B. Development of an algorithm for calculating the energy concentration of infrared optical systems taking into account the charge flow effect in a photodetector array [in English] // Opticheskii Zhurnal. 2020. V. 87. № 9. P. 3–11. http://doi.org/10.17586/1023-5086-2020-87-09-03-11
D. A. Drygin and A. B. Ostrun, "Development of an algorithm for calculating the energy concentration of infrared optical systems taking into account the charge flow effect in a photodetector array," Journal of Optical Technology. 87(9), 506-512 (2020). https://doi.org/10.1364/JOT.87.000506
The main problems of calculating the energy concentration function of optical systems obtained using a test-object image that is measured using a photodetector array are described herein for mid-infrared radiation (3–5 µm). Possible solutions based on mathematical transformations of two-dimensional optical signals are proposed. The effect of the charge flow in a photodetector array characteristic to analyzers of the wavelength range of 3–5 µm is considered in depth.
charge overflow effect, array photodetector, infrared radiation, energy concentration function, image processing
OCIS codes: 040.3060, 040.5160, 120.4630
References:1. I. R. Osipovich, “The use of automated image quality control tools for optical systems to measure lens distortion,” Izmer. Tekh. (1), 28–32 (2011).
2. GOST R 58566-2019, “Optics and photonics. Objectives for electrooptic systems. Test methods.”
3. A. V. Nuzhin, “Measuring the energy concentration in a small image,” TeleFoto Tekhnika (2009), http://www.telephototech.ru/kat_ podr.php?stidD17&st_gr_idD5.
4. A. I. Andosov, A. V. Polesskiy, T. N. Romanova, A. D. Yudovskaya, and M. A. Trishenkov, “Method of measuring the scattering spot of the lens using a matrix photodetector,” Usp. Prikl. Fiz. 7(5), 508–518 (2019).
5. K. V. Dang, C. L. Kauffman, and Z. I. Derzko, “Infrared focal plane array crosstalk measurement,” Proc. SPIE 1686, 125–135 (1992).
6. A. V. Polesskiy and A. D. Yudovskaya, “Analysis of the requirements for the photodetector path for measuring the circle of confusion with a photodetector array,” Usp. Prikl. Fiz. 4(5), 517–522 (2016).
7. J. S. Lim, Two-Dimensional Signal and Image Processing (Prentice Hall, New Jersey, 1990).
8. K. O. Boltar, N. G. Mansvetov, V. Stafeev, I, and N. I. Yakovleva, “Interelement crosstalk in IR focal plane arrays,” J. Opt. Technol. 67(2), 153–156 (2000) [Opt. Zh. 67(2), 77–80 (2000)].
9. G. S. Brodal and A. G. Jorgensen, “A linear time algorithm for the k maximal sums problem,” in International Symposium on the Mathematical Foundations of Computer Science (2007), pp. 442–453.
10. I. R. Osipovich, “Measurement of the energy concentration function of objectives using automated means of image quality control,” Kontenant 14(4), 74–77 (2015).