ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2020-87-09-44-53

УДК: 681.787+628.517+681.7.068

Compensating the influence of background noise on the operation of a fiber-optic interferometer

For Russian citation (Opticheskii Zhurnal):

Власов А.А., Плотников М.Ю., Волков А.В., Лавров В.С., Шарков И.А., Алейник А.С. Компенсация воздействия шумов окружающей среды на работу волоконно-оптического интерферометра // Оптический журнал. 2020. Т. 87. № 9. С. 44–53. http://doi.org/10.17586/1023-5086-2020-87-09-44-53

 

Vlasov A.A., Plotnikov M.Yu., Volkov A.V., Lavrov V.S., Sharkov I.A., Aleinik A.S. Compensating the influence of background noise on the operation of a fiber-optic interferometer. 2020. V. 87. № 9. P. 44–53. http://doi.org/10.17586/1023-5086-2020-87-09-44-53

For citation (Journal of Optical Technology):

A. A. Vlasov, M. Yu. Plotnikov, A. V. Volkov, V. S. Lavrov, I. A. Sharkov, and A. S. Aleinik, "Compensating the influence of background noise on the operation of a fiber-optic interferometer," Journal of Optical Technology. 87(9), 535-541 (2020).  https://doi.org/10.1364/JOT.87.000535

Abstract:

The results of an experimental test of the effectiveness of a method for compensating the influence of background noise on the operation of a fiber-optic compensative interferometer incorporated in a towable hydroacoustic cable assembly are presented herein. The principle of compensation is the detection of a separate phase signal induced by the noise on the interferometer’s arms and its subsequent subtraction from the interferometer’s output phase signal. An additional reference sensor that is isolated from external influence is introduced in the measuring system design to achieve the compensation. The effectiveness of noise canceling upon implementation of the suggested method is −14.73dB. This result can significantly reduce the noise level of measuring systems based on fiber-optic phase sensors and interferometers under real operating conditions.

Keywords:

fiber optic sensors, fiber optic interferometers, compensation interferometer, ambient noise, noise cancellation, noise protection

OCIS codes: 120.3180, 120.7280, 280.4788, 060.2370, 170.1065, 230.1040

References:

1. A. D. Kersey, A. Dandridge, A. R. Davis, C. K. Kirdendall, M. J. Marrone, and D. G. Gross, “64-element time-division multiplexed interferometric sensor array with EDFA telemetry,” in Optical Fiber Communication Conference (1996).

2. G. A. Cranch, C. K. Kirkendall, K. Daley, S. Motley, A. Bautista, J. Salzano, P. J. Nash, J. Latchem, and R. Crickmore, “Large-scale remotely pumped and interrogated fiber-optic interferometric sensor array,” IEEE Photon. Technol. Lett. 15(11), 1579–1581 (2003).

3. Y. Liao, E. Austin, P. J. Nash, S. A. Kingsley, and D. J. Richardson, “Highly scalable amplified hybrid TDM/DWDM array architecture for interferometric fiber-optic sensor systems,” J. Lightwave Technol. 31(6), 882–888 (2013).

4. A. Cusano, A. Cutolo, and J. Albert, Fiber Bragg Grating Sensors: Recent Advancements, Industrial Applications and Market Exploitation (Bentham Science Publishers, Sharjah, 2011).

5. E. Udd and W. B. Spillman, Jr., Fiber Optic Sensors: An Introduction for Engineers and Scientists (John Wiley & Sons, Hoboken, NJ, 2011).

6. J. H. Cole, C. Kirkendall, A. Dandridge, G. Cogdell, and T. G. Giallorenzi, “Twenty-five years of interferometric fiber optic acoustic sensors at the Naval Research Laboratory,” J. Wash. Acad. Sci. 90(3), 40–57 (2004).

7. C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D: Appl. Phys. 37(18), R197–R216 (2004).

8. V. Pallayil, “Ceramic and fibre optic hydrophone as sensors for lightweight arrays—a comparative study,” in OCEANS 2017- Anchorage (2017).

9. H. C. Lefevre, The Fiber-Optic Gyroscope (Artech House, London, 2014).

10. M. A. Smolovik, D. A. Pogorelaya, A. A. Vlasov, A. S. Aleynik, and V. E. Strigalev, “The study of mechanical resonances of the phase electrooptic modulator based on LiNbO3 for noise reduction of fiber-optic gyroscope,” J. Phys.: Conf. Ser. 1124(6), 061002 (2018).

11. E. Vostrikov, N. Kikilich, Y. Zalesskaya, A. Aleinik, M. Smolovik, I. Deyneka, and I. Meshkovskii, “Stabilization of central wavelength of erbium-doped fibre source as part of high-accuracy FOG,” IET Optoelectron. 14(4), 218–222 (2020).

12. A. S. Aleinik, I. G. Deineka, M. A. Smolovik, S. T. Neforosnyi, and A. V. Rupasov, “Compensation of excess RIN in fiber-optic gyro,” Gyrosc. Navigation 7(3), 214–222 (2016).

13. V. I. Bogoyavlensky, “Prospects and problems of developing oil and gas fields in the Arctic shelf,” Buren. Neft’ (11), 4–9 (2012).

14. N. P. Laverov, Y. V. Roslov, L. I. Lobkovskii, A. V. Tulupov, M. A. Voronov, and O. Y. Ganzha, “Prospects of the seismic survey of the ocean bottom in the Russian Federation,” Arktika: Ekol. Ekon. (4), 4–13 (2011).

15. S. V. Lysak, “Strategy of increasing competitiveness of Russian marine seismic survey enterprises in the world market,” Ph.D. thesis (Gorniy Universitet, St. Petersburg, 2014).

16. F. Souto, “Fibre optic towed array: the high-tech compact solution for naval warfare,” Proc. Acoust. 2013, 17–20 (2013).

17. S. J. Maas and I. Buchan, “Fiber optic 4C seabed cable for permanent reservoir monitoring,” in Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technology (2007), pp. 411–414.

18. N. Beverini, S. Firpi, P. Guerrini, E. Maccioni, A. Maguer, M. Morganti, F. Stefani, and C. Trono, “Fiber laser hydrophone for underwater acoustic surveillance and marine mammals monitoring,” Proc. SPIE 7994, 79941D (2011).

19. M. Y. Plotnikov, V. S. Lavrov, P. Y. Dmitraschenko, A. V. Kulikov, and I. K. Meshkovskiy, “Thin cable fiber-optic hydrophone array for passive acoustic surveillance applications,” IEEE Sens. J. 19(9), 3376–3382 (2019).

20. A. A. Vlasov, A. S. Aleynik, M. Y. Plotnikov, A. A. Dmitriev, and S. V. Varzhel, “Methods of mechanical noise impact suppression during Research Article Vol. 87, No. 9 / September 2020 / Journal of Optical Technology 541 streamer towing process using fiber Bragg gratings,” Sci. Tech. J. Inf. Technol. Mech. Opt. 19(4), 574–585 (2019).

21. A. A. Vlasov, M. Y. Plotnikov, V. S. Lavrov, S. S. Kiselev, and A. S. Aleinik, “The influence of a method of bracing a fiber-optical seismic streamer during towing on the parameters of its output signal,” Instrum. Exp. Tech. 63(4), 581–586 (2020).

22. G. W. McMahon and P. G. Cielo, “Fiber optic hydrophone sensitivity for different sensor configurations,” Appl. Opt. 18(22), 3720–3722 (1979).

23. A. A. Vlasov, A. S. Aleynik, P. A. Shuklin, A. N. Nikitenko, E. A. Motorin, and A. Y. Kireenkov, “Ultrasound detection by applying fiber Bragg gratings,” Sci. Tech. J. Inf. Technol. Mech. Opt. 19(5), 809–817 (2019).

24. A. V. Volkov, M. Y. Plotnikov, M. V. Mekhrengin, G. P. Miroshnichenko, and A. S. Aleynik, “Phase modulation depth evaluation and correction technique for the PGC demodulation scheme in fiber-optic interferometric sensors,” IEEE Sens. J. 17(13), 4143–4150 (2017).

25. A. V. Varlamov, M. Y. Plotnikov, A. S. Aleinik, P. M. Agrusov, I. V. Il’ichev, A. V. Shamray, and A. A. Vlasov, “Acoustic vibrations in integrated electro-optic modulators on substrates of lithium niobite,” Tech. Phys. Lett. 43(11), 994–997 (2017).

26. A. V. Varlamov, A. V. Kulikov, V. E. Strigalev, S. V. Varzhel, and S. M. Aksarin, “Determination of optical losses at fibers joining with different modefield diameter,” Sci. Tech. J. Inf. Technol. Mech. Opt. 13(2), 23–26 (2013).

27. M. J. Plotnikov, A. V. Kulikov, V. E. Strigalev, and I. K. Meshkovsky, “Dynamic range analysis of the phase generated carrier demodulation technique,” Adv. Opt. Technol. 2014, 815108 (2014).

28. G. B. Hocker, “Fiber-optic sensing of pressure and temperature,” Appl. Opt. 18(9), 1445–1448 (1979).

29. A. A. Vlasov, A. V. Varlamov, A. N. Ashirov, N. E. Kikilich, and A. S. Aleinik, “Research on the influence of the degree of acoustic sealing of acoustically conditioned sound protective cases of fiber-optic interferometers on their characteristics,” Instrum. Exp. Tech. 63(4), 506–510 (2020).

30. A. A. Vlasov, M. Y. Plotnikov, A. N. Ashirov, A. S. Aleinik, and A. N. Nikitenko, “An experimental setup for acoustic research of the components of fiber-optic measuring systems,” Instrum. Exp. Tech. 63(4), 494–501 (2020).

31. S. Smith, Digital Signal Processing: a Practical Guide for Engineers and Scientists (Elsevier, 2013).

32. N. Lagakos, I. J. Bush, J. H. Cole, J. A. Bucaro, J. D. Skogen, and G. B. Hocker, “Acoustic desensitization of single-mode fibers utilizing nickel coating,” Opt. Lett. 7(9), 460–462 (1982).

33. Y. C. Yang, H. L. Lee, and H. M. Chou, “Elasto-optics in doublecoated optical fibers induced by axial strain and hydrostatic pressure,” Appl. Opt. 41(10), 1989–1994 (2002).

34. N. Lagakos, T. R. Hickman, J. H. Cole, and J. A. Bucaro, “Optical fibers with reduced pressure sensitivity,” Opt. Lett. 6(9), 443–445 (1981).

35. A. A. Vlasov, A. S. Aleinik, A. N. Ashirov, M. Y. Plotnikov, and A. V. Varlamov, “Fiber optic cables with high acoustic insulation,” Tech. Phys. Lett. 45(8), 769–772 (2019).

36. A. A. Vlasov, M. Y. Plotnikov, A. S. Aleinik, and A. V. Varlamov, “Methods for acoustic desensitization of fiber optic interferometer,” J. Phys.: Conf. Ser. 1326(1), 012010 (2019).

37. A. A. Vlasov, M. Y. Plotnikov, A. N. Ashirov, A. S. Aleynik, A. V. Varlamov, and A. M. Stam, “The method for protection of sensitive fiber optic components from environmental noise and vibration impacts,” in IEEE International Conference on Electrical Engineering and Photonics (2019), pp. 305–307.

38. C. V. Poulsen, L. V. Hansen, O. Sigmund, J. E. Pedersen, and M. Beukema, “Articles comprising an optical fibre with a fibre Bragg grating and methods of their production,” U.S. Patent 7809029 (2010).

39. A. A. Vlasov, M. Y. Plotnikov, S. A. Volkovsky, A. S. Aleinik, E. A. Motorin, I. A. Sharkov, and A. A. Makarenko, “Development of the passive vibroacoustic isolation system for the path matched differential interferometry-based fiber-optic sensors,” Opt. Fiber Technol. 57, 102241 (2020).

40. P. G. Cielo, “Fiber optic hydrophone: improved strain configuration and environmental noise protection,” Appl. Opt. 18(17), 2933–2937 (1979).

41. O. H. Waagaard, E. Rønnekleiv, S. Forbord, and D. Thingbo, “Suppression of cable induced noise in an interferometric sensor system,” Proc. SPIE 7503, 75034Q (2009).

42. D. M. Baney, G. D. Van Wiggeren, and A. Motamedi, “Vibration noise mitigation in an interferometric system,” U.S. Patent 6825934 (2004).

43. N. I. Ivanov and A. E. Shashurin, Noise and Vibration Protection (Pechatniy Tsekh, St. Petersburg, 2019).