DOI: 10.17586/1023-5086-2020-87-09-54-69
УДК: 535.8; 004.27; 537.5
Directional coupling surface plasmon polaritons electro-optic modulator for optical ring networks-on-chip
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Zhi-Xun Liang, Chuan-Pei Xu, Ai-Jun Zhu, Cong Hu, She-Hui Du, Chun-Xia Zhao. Directional coupling surface plasmon polaritons electro-optic modulator for optical ring networks-on-chip (Электрооптический модулятор направленной связи на основе поверхностных плазмон-поляритонов для кольцевых оптических сетей на кристалле) [на англ. яз.] // Оптический журнал. 2020. Т. 87. № 9. С. 54–69. http://doi.org/10.17586/1023-5086-2020-87-09-54-69
Zhi-Xun Liang, Chuan-Pei Xu, Ai-Jun Zhu, Cong Hu, She-Hui Du, Chun-Xia Zhao. Directional coupling surface plasmon polaritons electro-optic modulator for optical ring networks-on-chip (Электрооптический модулятор направленной связи на основе поверхностных плазмон-поляритонов для кольцевых оптических сетей на кристалле) [in English] // Opticheskii Zhurnal. 2020. V. 87. № 9. P. 54–69. http://doi.org/10.17586/1023-5086-2020-87-09-54-69
Zhi-Xun Liang, Chuan-Pei Xu, Ai-Jun Zhu, Cong Hu, She-Hui Du, and Chun-Xia Zhao, "Directional coupling surface plasmon polariton electro-optic modulator for optical ring networks-on-chip," Journal of Optical Technology . 87(9), 542-553 (2020). https://doi.org/10.1364/JOT.87.000542
Electro-optic modulators are essential components of the optical network-on-chip. To resolve the large footprints, poor thermal stability, and low modulation rate of traditional optoelectronic devices such as micro-ring resonators, a directional coupled electro-optic modulator based on surface plasmon polaritons and coupled mode theory is designed. The modulator controls the change in carrier concentration of indium tin oxide activated material film by applying a voltage to realize electro-optic control. The modulator uses coupled-mode theory to couple the modulated optical signal into a ring waveguide. This type of modulator is suitable for an optical-on-chip network with an optical ring network-on-chip topology. The results show that the device operates at 1550 nm wavelength with a coupling efficiency of more than 90%, the insertion loss is 1.17 dB, the extinction ratio is 15.4 dB, the modulation rate is up to 0.75 Tbit/s, and the size is only 3.8ґ3.2ґ1.2 µm.
electro-optic modulator, surface plasmon polariton, optical ring network-on-chip, indium tin oxide, finite difference time domain, silicon photonics
OCIS codes: 230.4110, 240.6680
References:2. Paczkowski L.W., Balmakhtar M. Hardware-trusted network-on-chip (NOC) and system-on-chip (SOC) network function virtualization (NFV) data communications // U.S. Patent 10,318,723. Nov. 6, 2019.
3. Chen K., Li X., Gu H., Song L. Optical network-on-chip, optical router, and signal transmission method // U.S. Patent Application 10/250,958. Feb. 2, 2019.
4. Le Beux S., Trajkovic J., O’Connor I., Nicolescu G. Layout guidelines for 3D architectures including optical ring network-on-chip (ORNoC) // 2011 IEEE/IFIP 19th Internat. Conf. VLSI and System-on-Chip. IEEE. 2011. P. 242–247.
5. Cerutti I., Acmad M.N.A., Reyes R., Castoldi P., Andriolli N. Scheduling in multi-wavelength ring-based optical networks-on-chip // J. Opt. Commun. Netw. 2018. V. 10. № 4. P. 322–331.
6. Wang K., Wang K., Yang Y., Wang Y., Gu H. Layout optimization methodology for ring-based on-chip optical network // IEICE Electron. Exp. 2019. V. 16. № 20. P. 20190458.
7. Wang X., Gu H., Yang Y., Wang K., Hao Q. RPNoC: A ring-based packet-switched optical network-on-chip // IEEE Photonics Technol. Lett. 2015. V. 27. № 4. P. 423–426.
8. Thelakkat H.M. Performance and energy evaluation of parallelization strategies for network on chip communication architectures: Case study of canny edge detector application // Diss. Concordia University, 2018.
9. Hu Y.C., Chen H.M., Zhou H.T. Mach-Zehnder modulator based on photonic crystal and nanowire waveguide // J. Infrared Millim. Waves. 2018. V. 38. № 4. P. 499–507.
10. He M., Xu M., Ren Y., Jian J., Ruan Z., Xu Y., Gao S., Sun S., Wen X., Zhou L., Liu L., Guo C., Chen H., Yu S., Liu L., Cai X. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s-1 and beyond // Nat. Photonics. 2019. V. 13. № 5. P. 359–364.
11. Yue W.C., Yao P.J., Chen X.L., Tao R.X. Hybrid dual wedge plasmonic waveguide with long-range propagation and subwavelength mode confinement // J. Infrared Millim. Waves. 2018. V. 37. № 6. P. 663–667.
12. Badr M.M., Abdelatty M.Y., Swillam M.A. Ultra-fast silicon electro-optic modulator based on ITO-integrated directional coupler // Phys. Scr. 2019. V. 94. № 6. P. 065502.
13. Tahersima M.H., Ma Z., Gui Y., Sun S., Wang H., Amin R., Dalir H., Chen R., Miscuglio M., Sorger V.J. Coupling-enhanced dual ITO layer electro-absorption modulator in silicon photonics // Nanophotonics. 2019. V. 8. № 9. P. 1559–1566.
14. Kuang Y., Liu Y., Tian L., Han W., Li Z. A dual-slot electro-optic modulator based on an epsilon-near-zero oxide // IEEE Photonics J. 2019. V. 11. № 4. P. 1–12.
15. Cooper M.L., Mookherjea S. Numerically-assisted coupled-mode theory for silicon waveguide couplers and arrayed waveguides // Opt. Exp. 2009. V. 17. № 3. P. 1583–1599.
16. Bellanca G., Orlandi P., Bassi P. Assessment of the orthogonal and non-orthogonal coupled-mode theory for parallel optical waveguide couplers // JOSA A. 2018. V. 35. № 4. P. 577–585.
17. Jin L., Chen Q., Liu W., Song S. Electro-absorption modulator with dual carrier accumulation layers based on epsilon-near-zero ITO // Plasmonics. 2015. V. 11. № 4. P. 1087–1092.
18. Kim J.T. Silicon optical modulators based on tunable plasmonic directional couplers // IEEE J. Sel. Top. Quant. Electron. 2015. V. 21. № 4. P. 184–191.
19. Kim J.-S., Kim J.T. Silicon electro-optic modulator based on an ITO-integrated tunable directional coupler // J. Phys. D. Appl. Phys. 2016. V. 49. № 7. P. 075101.
20. Abdelatty M.Y., Badr M.M., Swillam M.A. Compact silicon electro-optical modulator using hybrid ITO tri-coupled waveguides // J. Light. Technol. 2018. V. 36. № 18. P. 4198–4204.
21. Farhan M.S., Zalnezhad E., Bushroa A.R., Sarhan A.A.D. Electrical and optical properties of indium-tin oxide (ITO) films by ion-assisted deposition (IAD) at room temperature // Int. J. Precis. Eng. Manuf. 2013. V. 14. № 8. P. 1465–1469.
22. Li Z.-Q., Yue Z., Bai L.D., Liu T.L., Feng D.D., Gu E.D., Li W.C. Metal ridge-triangular semiconductor of mixed surface plasma waveguide // J. Infrared Millim. Waves. 2017. V. 36. № 6. P. 761–766.
23. FDTD Solutions. Lumerical’s Nanophotonic FDTD Simulation Software.
24. Sun S., Narayana V.K., Sarpkaya I., Crandall J., Soref R.A., Dalir H., El-Ghazawi T., Sorger V.J. Hybrid photonic-plasmonic nonblocking broadband 5ґ5 router for optical networks // IEEE Photonics J. 2018. V. 10. № 2. P. 1–12.
25. Koch U., Hoessbacher C., Niegemann J., Hafner C., Leuthold J. Digital plasmonic absorption modulator exploiting epsilon-near-zero in transparent conducting oxides // IEEE Photonics J. 2016. V. 8. № 1. P. 1–13.
26. Kim H.J., Lee S.H., Lee D., Lee A.R., Lim K.-J., Shin W.-S., Kim J. Improvement of ohmic contact between the indium tin oxide and copper-plated contact of solar cells by using the Cu–Sn alloy film // J. Nanosci. Nanotechnol. 2020. V. 20. № 1. P. 245–251. 27. Liu E.K., Zhu B.S., Luo J.S. The physics of semiconductors. Beijing: Electronic Industry Press, 2017.