ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2021-88-01-03-13

УДК: 535.231.15

How to reduce the residual correction errors of atmospheric phase distortions, taking into account the spatial–temporal limitations of an adaptive optical system

For Russian citation (Opticheskii Zhurnal):

Афонин Г.И., Кошкаров А.С., Мальцев Г.Н. Определение условий малых остаточных ошибок коррекции атмосферных фазовых искажений с учетом пространственно-временных ограничений адаптивной оптической системы // Оптический журнал. 2021. Т. 88. № 1. С. 3–13. http://doi.org/10.17586/1023-5086-2021-88-01-03-13

 

Afonin G.I., Koshkarov A.S., Maltsev G.N. How to reduce the residual correction errors of atmospheric phase distortions, taking into account the spatial–temporal limitations of an adaptive optical system [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 1. P. 3–13. http://doi.org/10.17586/1023-5086-2021-88-01-03-13

For citation (Journal of Optical Technology):

G. I. Afonin, A. S. Koshkarov, and G. N. Mal’tsev, "How to reduce the residual correction errors of atmospheric phase distortions, taking into account the spatial–temporal limitations of an adaptive optical system," Journal of Optical Technology. 88(1), 1-7 (2021). https://doi.org/10.1364/JOT.88.000001

Abstract:

This paper presents a technique for analyzing the spatial–temporal limitations of adaptive optical systems when the zonal and modal components of the atmospheric phase distortions of the optical radiation are corrected. The temporal spectra of the components of the atmospheric phase distortions to be compensated are used to determine the conditions for ensuring that the adaptive-loop channels have a fast enough response. An analysis is given of how the introduced generalized response-rate parameters of the adaptive loop depend on the parameters of the active distortions. For the case of zonal correction of the atmospheric phase distortions with corrective actions in the form of a sum of the modal components of their expansion in Zernike polynomials, it is shown that, depending on the correspondence between the number of subapertures and the number of included polynomials, the required response rate can be determined either by the zonal-correction conditions or by the modal-correction conditions.

Keywords:

atmospheric phase distortions, adaptive optics, zonal and modal correction, adaptive loop response

OCIS codes: 350.1260, 140.0140

References:

1. V. V. Sychev, Adaptive Optical Systems in Large Telescopes (Tonkie Naukoemkie Tekhnologii, Stary Oskol, 2005).
2. F. Yu. Kanev and V. P. Lukin, Adaptive Optics: Numerical and Experimental Studies (Institut Optiki Atmosfery SO RAN, Tomsk, 2005).
3. Ya. I. Malashko and M. B. Naumov, Systems for Forming High-Power Laser Beams. Fundamentals of the Theory. Calculational Methods. High-Power Mirrors (Radiotekhnika, Moscow, 2013).
4. O. I. Shanin, Adaptive Optical Slope-Correction Systems: Resonance Adaptive Optics (Tekhnosfera, Moscow, 2013).
5. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66(3), 207–211 (1976).
6. M. A. Vorontsov and V. I. Shmal’gauzen, Principles of Adaptive Optics (Radio i Svyaz’, Moscow 1985).
7. D. P. Luk’yanov, A. A. Kornienko, and B. E. Rudnitski, Optical Adaptive Systems (Radio i Svyaz’, Moscow, 1989).
8. V. P. Lukin, Atmospheric Adaptive Optics (Nauka, Novosibirsk, 1986).
9. J. S. Hardy, “Active optics: a new technology for the control of light,” Proc. IEEE 66(6), 651–697 (1978) [TIIÉR 66(6), 31–85 (1978)].
10. A. V. Chernykh and Yu. I. Shanin, “Automatic control systems of adaptive optical systems. Analytical review: Part 1, Adaptive optical system control of onboard laser installations,” Mashinostr. Komp. Tekhnol. (3), 51–68 (2018).
11. A. V. Chernykh and Yu. I. Shanin, “Automatic control systems of adaptive optical systems. Analytical review: Part 2, Application of adaptive filtering and control at spaced frequencies,” Mashinostr. Komp. Tekhnol. (4), 13–31 (2018).
12. L. A. Bol’basova and V. P. Lukin, Adaptive Correction of Atmospheric Distortions of Optical Images, Based on an Artificial Reference Source (Fizmatlit, Moscow, 2012).
13. V. G. Taranenko and O. I. Shanin, Adaptive Optics (Radio i Svyaz’, Moscow, 1990).
14. G. N. Mal’tsev, “Investigation of the iterative algorithm of processing of measurements of wave-front sensors of the Hartmann type,” Opt.
Spectrosc. 81(3), 400–403 (1996) [Opt. Spektrosk. 81(3), 442–445 (1996)].
15. A. A. Kornienko and G. N. Mal’tsev, “Using spectral resolutions of Zernike polynomials when studying the aberrations of adaptive optical systems,” Sov. J. Opt. Technol. 55(6), 341–344 (1988) [Opt.-Mekh. Prom-st. 55(6), 19–22 (1988)].
16. D. A. Bezuglov and I. A. Sakharov, “Method of wave-front reconstruction in a basis of orthogonal functions,” Fundam. Issled. (11), 27–31 (2015).
17. V. P. Lukin, “Adaptive optics in the formation of optical beams and images,” Phys. Usp. 57(6), 556–592 (2014) [Usp. Fiz. Nauk 184(6), 599–640 (2014)].
18. V. E. Zuev, V. A. Banakh, and V. V. Pokasov, Optics of a Turbulent Atmosphere (Gidrometeoizdat, Leningrad, 1988).
19. D. P. Greenwood, “Mutual coherence function of a wavefront corrected by zonal adaptive-optics,” J. Opt. Soc. Am. 69(4), 549–554 (1979).
20. G. N. Mal’tsev, “Spectral representation of aberrations of adaptive optical systems under conditions of spatial–temporal limitations,” Opt. Spectrosc. 78(1), 110–113 (1995) [Opt. Spektrosk. 78(1), 123–126 (1995)].
21. G. N. Mal’tsev, “Choosing the limiting frequency of the tracking-mirror control loop of an adaptive telescope for observing moving objects,” J. Opt. Technol. 70(3), 183–186 (2003) [Opt. Zh. 70(3), 45–49 (2003)].
22. G. N. Mal’tsev and D. N. Grigor’ev, “Wavefront correction quality using one-piece deformable mirrors,” J. Opt. Technol. 59(10), 580–582 (1992) [Opt. Zh. 59(10), 6–10 (1992)].
23. V. N. Fomin, A. L. Fradkov, and V. A. Yakubovich, Adaptive Control of Dynamic Processes (Nauka, Moscow, 1981).