DOI: 10.17586/1023-5086-2021-88-01-37-43
УДК: 681.7.069.32, 519.246
Influence of laser interference on the detection capabilities of an infrared optoelecronic surveillance system
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Павлов Н.И., Резунков Ю.А. Влияние лазерной помехи на обнаружительные возможности инфракрасной оптико-электронной системы наблюдения // Оптический журнал. 2021. Т. 88. № 1. С. 37–43. http://doi.org/10.17586/1023-5086-2021-88-01-37-43
Pavlov N.I., Rezunkov Yu.A. Influence of laser interference on the detection capabilities of an infrared optoelecronic surveillance system [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 1. P. 37–43. http://doi.org/10.17586/1023-5086-2021-88-01-37-43
N. I. Pavlov and Yu. A. Rezunkov, "Influence of laser interference on the detection capabilities of an infrared optoelecronic surveillance system," Journal of Optical Technology. 88(1), 25-29 (2021). https://doi.org/10.1364/JOT.88.000025
The influence of out-of-field laser interference on the detection characteristics of an infrared optoelecronic system for surveillance of quasi-point objects is considered. Analytic expressions based on the description of the probability density function of the noise signal, using an approximation in Gaussian form, are proposed for estimation of the probabilities of false alarm and missing a quasi-point surveillance object (target). The average value (mathematical expectation) of the detected noise signal and the parameter M that characterizes the statistical properties of scattered laser radiation incident on the focal matrix are the parameters that determine the specific form of this function. The aforementioned parameters are determined while processing experimental frames obtained under the out-of-field laser exposure of the model optoelecronic system.
infrared optoelecronic system, matrix photodetector, quasi-point object, laser interference, probability density function, Gaussian function, probability of false alarm, target acquisition failure probability
OCIS codes: 230.2090, 140.3070, 120.6150, 100.2000
References:1. S. V. Asanov, A. B. Ignatiev, V. V. Morozov, M. S. Egorov, Yu. A. Rezunkov, V. P. Savelyeva, and V. V. Stepanov, “Statistical characteristics of the speckle images of a scattered laser beam in the focal plane of a receiver objective,” J. Opt. Technol. 79(9), 545–549 (2012) [Opt. Zh. 79(9), 23–29 (2012)].
2. S. V. Asanov, A. B. Ignatiev, V. V. Morozov, M. S. Egorov, Yu. A. Rezunkov, and V. V. Stepanov, “Nonlinearity and persistence of the response of IR photodetector arrays to laser radiation,” J. Opt. Technol. 81(9), 531–536 (2014) [Opt. Zh. 81(9), 62–68 (2014)].
3. R. H. M. A. Schleijpen, A. Dimmeler, B. Eberle, J. C. van den Heuvel, A. L. Mieremet, H. Bekman, and B. Mellieret, “Laser dazzling of focal plane array cameras,” Proc. SPIE 6738, 65431B (2007).
4. A. Durecu, P. Bourdon, D. Fleury, D. Goular, S. Rommeluère, and O. Vasseur, “Infrared laser irradiation breadboard: dazzling sensitivity analysis of HgCdTe focal plane array,” Proc. SPIE 8187, 81870K (2011).
5. C. N. Santos, S. Chretien, L. Merella, and M. Vandewal, “Visible and near-infrared laser dazzling of CCD and CMOS cameras,” Proc. SPIE 10797, 107970S (2018).
6. N. Hueber, D. Vincent, A. Morin, A. Dieterlen, and P. Raymond, “Analysis and quantification of laser-dazzling effects on IR focal plane arrays,” Proc. SPIE 7660, 766042 (2010).
7. J. Goodman, Statistical Optics (Mir, Moscow, 1988).
8. M. A. Trishenkov, Photodetecting Devices and CCD: Detection of Weak Optical Signals (Radio i Svyaz’, Moscow, 1992).
9. B. R. Levin, Theoretical Basis of Statistical Radiotechnology (Radio i Svyaz’, Moscow, 1989).
10. E. S. Venttsel’, Probability Theory (Vyshaya Shkola, Moscow, 1999).