ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2021-88-10-15-25

УДК: 621.383.681.7

Algorithm for modeling the optical system of an individual’s eyes using the location of the far point for clear vision

For Russian citation (Opticheskii Zhurnal):

Евлампьева Е.С., Руховец А.Г., Черкасова Д.Н. Алгоритм моделирования оптической системы глаз индивидуумов по расположению дальнейшей точки ясного видения // Оптический журнал. 2021. Т. 88. № 10. С. 15–25. http://doi.org/10.17586/1023-5086-2021-88-10-15-25

 

Evlampieva E.S., Rukhovets A.G., Cherkasova D.N. Algorithm for modeling the optical system of an individual’s eyes using the location of the far point for clear vision [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 10. P. 15–25. http://doi.org/10.17586/1023-5086-2021-88-10-15-25

For citation (Journal of Optical Technology):

E. S. Evlamp’eva, A. G. Rukhovets, and D. N. Cherkasova, "Algorithm for modeling the optical system of an individual’s eyes using the location of the far point for clear vision," Journal of Optical Technology. 88(10), 561-568 (2021). https://doi.org/10.1364/JOT.88.000561

Abstract:

This paper proposes an algorithm for modeling the optical system of the eyes of individuals with emmetropia, myopia, and hyperopia. The algorithm requires metrologic studies of the eye’s optical system by means of subjective testing and optical biometry and computer calculation of the paraxial characteristics, based on the above and using the Mathcad and OPAL-PC programs. The correctness of the development is confirmed by computer modeling and experimentally. As a result, the design parameters and the paraxial optical response of the eyes of individuals with myopia (nearsightedness) and hyperopia (farsightedness) are presented for the first time to our knowledge.

Keywords:

normal fellow eye, biological variation, proportionality, emmetropia, resting accommodation, far point for clear vision, "schematic eye", sight line, subjective testing, optical biometry

OCIS codes: 220.1000, 170.4460

References:

1. V. V. Volkov, A. I. Gorban’, and O. A. Dzhaliashvili, Clinical Viso- and Refractometry (Meditsina, Leningradskoe Otdelenie, Leningrad, 1976).
2. H. Helmholtz, Treatise on Physiological Optics, vol. 1 (Optical Society of America, New York, 1924).
3. N. V. Shul’pina, Biomicroscopy of the Eye (Meditsina, Moscow, 1966).
4. V. N. Churilovski, Theory of Optical Devices (Mashinostroenie, Leningrad, 1966).
5. K. Mutzte and F. Rohleder, Praktische Augenoptik (VEB Verlagtechnik, Berlin, 1986).
6. B. V. Ovchinnikov, G. I. Kadaner, S. I. Kruglov, A. B. Malyutin, and A. M. Panin, “Establishment and development of ocular optics at GOI,” Opt. Zh. 85(11), 1–37 (2018), Appendix No. 11, http://www.opticjourn.ru/BP/05-11P-18.docx.
7. V. V. Olyunin, A. G. Rukhovets, and D. N. Cherkasova, “Using biometry results to optically calculate the paraxial characteristics of the eyes of individuals with emmetropia,” J. Opt. Technol. 88(1), 42–48 (2021) [Opt. Zh. 88(1), 60–68 (2021)].
8. L. I. Balashevich, “Using the laws of paraxial optics to calculate the optical power of an intraocular lens,” Oftal’mokhirurgiya (4), 39–44 (2012).
9. O. Pomerantzeff, M. Pankratov, G. J. Wang, and P. Dufault, “Wide-angle optical model of the eye,” Am. J. Optom. Physiol. Opt. 61(3), 166–176 (1984).
10. S. E. Kurushina and Yu. L. Ratis, “Mathematical model of the crystalline lens adequate to reconstruct its anatomical structure and the optical properties of the eye system,” Komp’yut. Opt. 21, 81–87 (2001).
11. B. Vojnikovi ´c and E. Tamajo, “Gullstrand’s optical schematic system of the eye—modified by Vojnikovi ´c & Tamajo,” Coll. Antropol. 37(1), Supplement 1, 41–50 (2013).
12. Kh. P. Takhchidi, A. N. Bessarabov, and E. N. Panteleev, “Parametrized schematic standard eye for solving computational problems of ophthalmology (part II),” Oftal’mokhirurgiya (1), 59–72 (2007).
13. A. V. Bakholdin, N. F. Korshikova, and D. N. Cherkasova, “Computer modeling of the optical system of an individual’s eye,” Izv. Vyssh. Uchebn. Zaved. SPb. 55(4), 68–72 (2012).
14. E. S. Evlamp’eva, V. V. Olyunin, and A. G. Rukhovets, “Using the results of biometry in the mathematical modeling of an individual’s eye,” in Collection of Abstracts of Reports of Young Scientists (ITMO University, St. Petersburg, 2019), https://kmu.itmo.ru/file/download/259.
15. D. N. Cherkasova, Optical Ophthalmological Devices (SPb GU ITMO, St. Petersburg, 2003).
16. K. Fogler and G. M. B. Uévlat, “System and method for determining the biometric properties of the eye,” Russian Patent No. 2,661,061 (2018).
17. M. D. Simpson, “Calculating the optical power of an intraocular lens (IOL) in accordance with directly determining the position of the IOL,” Russian Patent No. 2,633,317 (2017).
18. D. N. Cherkasova, A. V. Bakholdin, and E. S. Evlamp’eva, Optical Ophthalmological Devices and Systems, part 2 (ITMO University, St. Petersburg, 2019), https://books.ifmo.ru/file/pdf/2516.pdf.
19. M. Dzhali, Spectacle Lenses and Their Selection (RA VEKO, St. Petersburg, 2010).
20. T. V. Ivanova, Fundamentals of Optics: Methodical Recommendations for Laboratory Practice, A. A. Shekhonin, ed. (SPb GU ITMO, St. Petersburg, 2009).