ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2021-88-10-26-32

УДК: 621.035

Application limitations of a laser guide star in adaptive optoelectronic systems caused by its jitter in the atmosphere

For Russian citation (Opticheskii Zhurnal):

Клеймёнов В.В., Возмищев И.Ю., Новикова Е.В. Ограничения применения лазерной опорной звезды в адаптивных оптико-электронных системах, обусловленные её дрожанием в атмосфере // Оптический журнал. 2021. Т. 88. № 10. С. 24–32. http://doi.org/10.17586/1023-5086-2021-88-10-24-32

 

Kleymyonov V.V., Vozmishchev I.Yu., Novikova E.V. Application limitations of a laser guide star in adaptive optoelectronic systems caused by its jitter in the atmosphere [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 10. P. 24–32. http://doi.org/10.17586/1023-5086-2021-88-10-24-32

For citation (Journal of Optical Technology):

V. V. Kleimenov, I. Yu. Vozmishchev, and E. V. Novikova, "Application limitations of a laser guide star in adaptive optoelectronic systems caused by its jitter in the atmosphere," Journal of Optical Technology. 88(10), 569-573 (2021). https://doi.org/10.1364/JOT.88.000569

Abstract:

Application limitations caused by the jitter of a laser guide star used for the compensation of atmospheric phase distortions are considered for Earth-based adaptive optoelectronic systems for the observation of natural and artificial space objects. The spatial coherence radii (Fried parameter) for which a laser beam remains within the isoplanatic angle under the jitter effect during guide star formation are estimated using locally homogeneous and isotropic atmospheric turbulence models. Beam deflections in two mutually orthogonal directions are considered to be distributed normally, and the probability of the beam remaining within the isoplanatic angle is considered to be subject to the Rayleigh law. The angular divergence of the deflected beam is estimated for a short exposure with a duration less than the atmosphere freezing time for the far and near fields of the emitting laser aperture.

Keywords:

turbulent atmosphere, adaptive optics, isoplanatic angle, laser guide star, coherence radii, laser beam jitter dispersion, laser beam angular divergence

OCIS codes: 010.1080, 110.1085, 010.3310, 010.1330, 010.1300

References:

1. V. Kornilov, S. Ilyasov, O. Vozyakova, Yu. Tillaev, B. Safonov, M. Ibragimov, N. Shatsky, and Sh. Egamberdiev, “Measurements of optical turbulence in the free atmosphere above Mount Maidanak in 2005–2007,” Astron. Lett. 35(8), 547–554 (2009) [Pis’ma Astron. Zh. 35(8), 606–614 (2009)].
2. V. P. Lukin, “Adaptive optics in the formation of optical beams and images,” Phys.-Usp. 57(6), 556–592 (2014) [Usp. Fiz. Nauk 184(6), 599–640 (2014)].
3. L. A. Bol’basova and V. P. Lukin, Adaptive Correction of Atmospheric Distortions of Optical Images Based on a Synthetic Reference Source (Fizmatlit, Moscow, 2012).
4. V. V. Kleymyonov and E. V. Novikova, “Existing large-sized ground optical telescopes for space objects observation,” Izv. Vyssh. Uchebn. Zaved. Priborostr. 61(10), 827–843 (2018).
5. D. Senft, S. Hunt, T. Swindle, N. Morris, R. Holmes, E. Walker, J. Lucas, J. Toth, M. Abercrombie, J. Mooney, and T. Georges, “Sodium guide star signal levels measured at AMOS and comparison totheory,” in Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference (2019).
6. J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford University Press, Oxford, 1998).
7. R. K. Tyson, Principles of Adaptive Optics (CRC Press, New York, 2010).
8. V. I. Tatarskii, Propagation of Waves in Turbulent Atmosphere (Nauka, Moscow, 1967).
9. V. L. Mironov, V. V. Nosov, and B. N. Chen, “Quivering of optical images of laser sources in a turbulent atmosphere,” Radiophys. Quantum Electron. 23(4), 319–325 (1980) [Izv. Vyssh. Uchebn. Zaved. Radiofiz. 23(4), 461–469 (1980)].
10. V. P. Lukin, Adaptive Atmospheric Optics (Nauka, Novosibirsk, 1986).
11. V. L. Mironov, Laser Beam Propagation in Turbulent Atmosphere (Nauka, Novosibirsk, 1981).
12. V. A. Banakh and V. L. Mironov, Location Propagation of Laser Radiation in Turbulent Atmosphere (Nauka, Moscow, 1986).
13. E. S. Venttsel’, Probability Theory (Nauka, Moscow, 1969).
14. D. L. Fried, “Statistics of geometric representation of wavefront distortion,” J. Opt. Soc. Am. 55(11), 1427–1435 (1965).
15. D. L. Fried, “Anisoplanatism in adaptive optics,” J. Opt. Soc. Am. 72(1), 52–61 (1982).
16. R. F. Lutomirski and H. T. Yura, “Propagation of a finite optical beam in an inhomogeneous medium,” Appl. Opt. 10, 1652–1658 (1971).
17. X. Ji and X. Li, “Directionality of Gaussian array beams propagating in atmospheric turbulence,” J. Opt. Soc. Am. A 26(2), 236–243 (2009).
18. V. P. Lukin, “Remaining distortions conditioned by the dimension of a guiding source,” Opt. Atmos. Okeana 27(11), 949–956 (2014).
19. D. L. Fried, “Optical resolution through a randomly inhomogeneous medium for very long and very short exposures,” J. Opt. Soc. Am. 56(10), 1372–1379 (1966).
20. J. Y. Wang, “Optical resolution through a turbulent medium with adaptive phase compensations,” in Adaptive Optics (Mir, Moscow, 1980), pp. 374–398.
21. P. A. Konyaev, E. A. Kopulov, P. G. Kovadlo, V. P. Lukin, A. A. Selin, and A. Yu. Shikhovtsev, “Works on a set of data measuring turbulence in different seasons of the year,” Proc. SPIE 10466, 10466N (2017).
22. L. A. Bolbasova, A. Yu. Shikhovtsev, E. A. Kopylov, A. A. Selin, V. P. Lukin, and P. G. Kovadlo, “Daytime optical turbulence and wind speed distributions at the Baikal Astrophysical Observatory,” Mon. Not. R. Astron. Soc. 482, 2619–2626 (2019).