DOI: 10.17586/1023-5086-2021-88-10-03-10
УДК: 771.351.7
Compact periscope-type objective based on wedge-shaped prisms with free-form surfaces
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Грейсух Г.И., Ежов Е.Г., Левин И.А., Казин С.В. Компактный объектив перископического типа на основе клиновидных призм с поверхностями свободной формы // Оптический журнал. 2021. Т. 88. № 10. С. 3–10. http://doi.org/10.17586/1023-5086-2021-88-10-03-10
G. I. Greisukh, E. G. Ezhov, I. A. Levin, and S. V. Kazin Compact periscope-type objective based on wedge-shaped prisms with free-form surfaces [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 10. P. 3–10. http://doi.org/10.17586/1023-5086-2021-88-10-03-10
G. I. Greisukh, E. G. Ezhov, I. A. Levin, and S. V. Kazin, "Compact periscope-type objective based on wedge-shaped prisms with free-form surfaces," Journal of Optical Technology. 88(10), 553-557 (2021). https://doi.org/10.1364/JOT.88.000553
Peculiarities of the optical layout configuration of a periscope-type objective based on wedge-shaped prisms with free-form surfaces are considered. Guidelines on the correction of aberrations of the initial optical system and control of ray incidence angles on the prism surfaces in the areas where ray reflection and refraction zones overlap are formulated. The effectiveness of these guidelines is demonstrated by calculation of a compact periscope-type objective operating in a spectral interval spanning visible and near-infrared ranges. Elements of the optical layout of the objective are fabricated using advanced commercially available types of plastic.
periscope-type objective, wedge-shaped prism, free-form surface, correction of aberrations
Acknowledgements:The research was supported by the Russian Science Foundation, grant No. 20-19-00081.
OCIS codes: 110.0110, 220.0220
References:1. J. Bareau and P. P. Clark, “The optics of miniature digital camera modules,” Proc. SPIE 6342, 63421F (2006).
2. I. G. Bronsht ˇen, V. A. Zverev, I. L. Livshits, Y.-G. Kim, T.-Y. Kim, and P.-H. Jung, “Choosing an optical setup and designing compact objectives for mobile telephones,” J. Opt. Technol. 76(5), 268–273 (2009) [Opt. Zh. 76(5), 25–31 (2009)].
3. T. Steinich and V. Blahnik, “Optical design of camera optics for mobile phones,” Adv. Opt. Technol. 1(1–2), 51–58 (2012).
4. G. I. Greisukh, E. G. Ezhov, I. A. Levin, and S. A. Stepanov, “Design of achromatic and apochromatic plastic micro-objectives,” Appl. Opt. 49(23), 4379–4384 (2010).
5. G. I. Greisukh, E. G. Ezhov, I. A. Levin, and S. A. Stepanov, “Design of plastic-lens micro-objectives superachromats,” Komput. Opt. 35(4), 473–479 (2011).
6. G. I. Greisukh, E. G. Ezhov, S. Kazin, V, and S. A. Stepanov, “Single-layer kinoforms for cameras and video cameras of mobile communication devices,” Komput. Opt. 41(2), 218–226 (2017).
7. W.-S. Sun, C.-L. Tien, J.-W. Pan, Y.-H. Chao, and P.-Y. Chu, “Optimization design of periscope type 3X zoom lens design for a five megapixel cellphone camera,” Proc. SPIE 10150, 1015005 (2016).
8. G. I. Greisukh, E. G. Ezhov, S. V. Kazin, and S. A. Stepanov, “Layout and design of a periscope-type refraction-diffraction objective for a mobile communication device,” J. Opt. Technol. 83(11), 687–691 (2016) [Opt. Zh. 83(11), 51–57 (2016)].
9. H. Hoshi, N. Taniguchi, H. Morishima, T. Akiyama, S. Yamazaki, and A. Okuyama, “Off-axial HMD optical system consisting of aspherical surfaces without rotational symmetry,” Proc. SPIE 2653, 234–242 (1996).
10. Z. Zhuang, Q. Cheng, P. Surman, Y. Zheng, and X. W. Sun, “A compact and lightweight off-axis lightguide prism in near to eye display,” Opt. Commun. 393, 143–151 (2017).
11. D. Cheng, Y. Wang, H. Hua, and J. Sasian, “Design of a wide-angle, lightweight head-mounted display using free-form optics tiling,” Opt. Lett. 36(11), 2098–2100 (2011).
12. D. Cheng, Y. Wang, H. Hua, and M. M. Talha, “Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism,” Appl. Opt. 48(14), 2655–2668 (2009).
13. F. Z. Fang, X. D. Zhang, A. Weckenmann, G. Zhang, X, and C. Evans, “Manufacturing and measurement of freeform optics,” CIRP Ann. 62(2), 823–846 (2013).
14. L. Dick, S. Risse, and A. Tünnermann, “Injection molded high precision freeform optics for high volume applications,” Adv. Opt. Technol. 1(1–2), 39–50 (2012).
15. H. Owari, S. Kawai, Y. Mukai, S. Terada, T. Matsuo, M. Seigo, A. Yano, T. Imura, D. Emi, and S. Kitagawa, “Technology development of mold fabrication for free-form surface, DOE, and microlens,” Proc. SPIE 6110, 61100T (2006).
16. T. Blalock, K. Medicus, and J. DeGroote Nelson, “Fabrication of free-form optics,” Proc. SPIE 9575, 95750H (2015).
17. Mitsubishi Gas Chemical, http://www.mgc.co.jp/eng/products/kc/iupizeta_ep.html.
18. N. Aoki, T. Togino, and A. Tamagawa, “Image-forming optical system and apparatus using the same,” U.S. patent 6,084,715 (2000).
19. Y. Zhong and H. Gross, “Initial system design method for non-rotationally symmetric systems based on Gaussian brackets and Nodal aberration theory,” Opt. Express 25(9), 10016–10030 (2017).
20. K. Araki, “Paraxial analysis of off-axial optical systems,” Jpn. J. Opt. 29(3), 156–163 (2000).
21. K. Araki, “Paraxial and aberration analysis of off-axial optical systems,” Opt. Rev. 12(3), 219–222 (2005).
22. A. Takeshi and A. Keisuke, “Optical system,” E.P. patent 0 977 067 A2 G02B 13/00 (2000).
23. M. Born and E. Wolf, Principles of Optics (Pergamon Press, New York, 1968).
24. Zemax: optical, illumination, and laser system design software, http://www.zemax.com/products/opticstudio.
25. G. I. Greisukh, E. G. Ezhov, S. V. Kazin, I. A. Levin, and S. A. Stepanov, “Diffractive elements in optical systems: successes, challenges, and solutions,” Izv. VUZov Radiofiz. 57(8–9), 683–692 (2014).