DOI: 10.17586/1023-5086-2021-88-10-33-38
УДК: 528.5, 681.7
3D reconstruction accuracy improvement of the stereo vision system by changing the convergence angle of cameras
Full text on elibrary.ru
Publication in Journal of Optical Technology
S. A. Sayyedbarzani, S. M. Emam 3D reconstruction accuracy improvement of the stereo vision system by changing the convergence angle of cameras (Улучшение точности реконструкции трёхмерных объектов в стереовизионной системе с изменяемым углом схождения между камерами) [на англ. яз.] // Оптический журнал. 2021. Т. 88. № 10. С. 33–38. http://doi.org/10.17586/1023-5086-2021-88-10-33-38
S. A. Sayyedbarzani, S. M. Emam 3D reconstruction accuracy improvement of the stereo vision system by changing the convergence angle of cameras (Улучшение точности реконструкции трёхмерных объектов в стереовизионной системе с изменяемым углом схождения между камерами) [in English] // Opticheskii Zhurnal. 2021. V. 88. № 10. P. 33–38. http://doi.org/10.17586/1023-5086-2021-88-10-33-38
S. A. Sayyedbarzani and S. M. Emam, "3D reconstruction accuracy improvement of a stereo vision system by changing the convergence angle of the cameras," Journal of Optical Technology. 88(10), 574-578 (2021). https://doi.org/10.1364/JOT.88.000574
The stereo vision systems are highly used for 3D depth reconstruction. The measurement accuracy of these scanners affected by the quantization error caused by the camera sensors. In this paper, the effect of changing the convergence angle of the cameras on the quantization uncertainty is discussed. Firstly, the mathematical model of a stereo vision scanner with the ability of adjusting the convergence angle was introduced. Then, the effect of changing the convergence angle on the quantization error reduction was investigated. Finally, the physical experiments were designed to validate the proposed approach. The experimental results showed that the 3D reconstruction accuracy can be improved by changing the convergence angle of the cameras.
stereo vision, camera convergence angle, 3D reconstruction, Iso-disparity surface
OCIS codes: 150.0150, 150.3045, 110.3010, 100.3010, 100.6640
References:1. Remondino F., El-Hakim S. Image-based 3D modelling: a review // Photogram. Recor. 2006. V. 21(115). P. 269–291.
2. Aggogeri F., Barbato G., Barini E.M., Genta G., Levi R. Measurement uncertainty assessment of Coordinate Measuring Machines by simulation and planned experimentation // CIRP J. Manufact. Sci. Tech. 2011. V. 4(1). P. 51–56.
3. Acko B., McCarthy M., Haertig F., Buchmeister B. Standards for testing freeform measurement capability of optical and tactile coordinate measuring machines // Measur. Sci. Tech. 2012. V. 23(9). P. 094013.
4. Xiao Y.J., Li Y.F. Optimized stereo reconstruction of free-form space curves based on a nonuniform rational B-spline model // J. Opt. Soc. Am. A. 2005. V. 22(9). P. 1746–1762.
5. Wang Y., Liu K., Hao Q., Wang X., Lau D.L., Hassebrook L.G. Robust active stereo vision using Kullback–Leibler divergence // IEEE transactions on Pattern Anal. Mach. Intell. 2012. V. 34(3). P. 548–563.
6. Zhao H., Wang Z., Jiang H., Xu Y., Dong C. Calibration for stereo vision system based on phase matching and bundle adjustment algorithm // Opt. Las. in Eng. 2015. V. 68. P. 203–213.
7. Lim K.B., Qian B. Biprism distortion modeling and calibration for a single-lens stereovision system // J. Opt. Soc. Am. A. 2016. V. 33. P. 2213–2224.
8. Hamzah R.A., Ibrahim H., Hassan A.H.A. Stereo matching algorithm for 3d surface reconstruction based on triangulation principle // In 2016 1st International Conference on Information Technology, Information
Systems and Electrical Engineering (ICITISEE). Yogyakarta, Indonesia. August 2016. P. 119–124.
9. Chen J., Khatibi S., Kulesza W. Depth reconstruction uncertainty analysis and improvement – the dithering approach // Image Vis. Comput. 2010. V. 28(9). P. 1377–1385.
10. Chen J., Khatibi S., Kulesza W. Planning of a multi stereo visual sensor system-depth accuracy and variable baseline approach // In 3DTV Conference. Kos, Greece. May 2007. P. 1–4.
11. Rovira-Más F., Wang Q., Zhang Q. Design parameters for adjusting the visual field of binocular stereo cameras // Biosys. Eng. 2010. V. 105(1). P. 59–70.
12. Chen T., Catrysse P.B., El Gamal A., Wandell B.A. How small should pixel size be? // In Sensors and Camera Systems for Scientific, Industrial, and Digital Photography Applications. International Society for Optics and Photonics. San Jose, CA, United States. May 2000. V. 3965. P. 451–460.
13. Hengl T. Finding the right pixel size // Com. & Geosci. 2006. V. 32(9). P. 1283–1298.
14. Yu S., Kang W., Ko S., Paik J. Single image super-resolution using locally adaptive multiple linear regression // J. Opt. Soc. Am. A. 2015. V. 32. P. 2264–2275.
15. Park S.C., Park M.K., Kang M.G. Super-resolution image reconstruction: a technical overview // IEEE Sig. Process. Mag. 2003. V. 20(3). P. 21–36.
16. Alasseur C., Constantinides A.G., Husson L. Colour quantisation through dithering techniques // In Proceedings 2003 International Conference on Image Processing (Cat. No. 03CH37429). Barcelona, Spain. September 2003. V. 1. P. I–469.
17. El-Said S.A. Image quantization using improved artificial fish swarm algorithm // Soft Comput. 2015. V. 19(9). P. 2667–2679.
18. Ghanbarian A.T., Kabir E., Charkari N.M. Color reduction based on ant colony // Pattern Reco. Letter. 2007. V. 28(12). P. 1383–1390.
19. Ben-Ezra M., Zomet A., Nayar S.K. Video super-resolution using controlled subpixel detector shifts // IEEE Transactions on Pattern Anal. Mach. Intell. 2005. V. 27(6). P. 977–987.
20. Khalili K., Razavi S.A., Karimzadgan D. High resolution measurements using a low resolution system // Measur. Sci. Rev. 2005. V. 5(1). P. 56–59.
21. Emam S.M., Khatibi S., Khalili K. Improving the accuracy of laser scanning for 3D model reconstruction using dithering technique // Proc. Tech. 12. 2014. P. 353–358.
22. Sayyedbarzani S.A., Emam S.M. Evaluation of the quantization error in the convergence stereo cameras // Journal of Optical Technology. 2020. V. 87(8). P. 495–500.