ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2021-88-10-39-49

УДК: 621.391.8

Performance optimization of inter-satellite optical wireless system using linearly polarized modes

For Russian citation (Opticheskii Zhurnal):

Sanmukh Kaur, Vishakha Tyagi, Anurupa Lubana Performance optimization of inter-satellite optical wireless system using linearly polarized modes (Оптимизация производительности межспутниковой оптической беспроводной системы с использованием линейно поляризованных мод) [на англ. яз.] // Оптический журнал. 2021. Т. 88. № 10. С. 39–49. http://doi.org/10.17586/1023-5086-2021-88-10-39-49

 

Sanmukh Kaur, Vishakha Tyagi, Anurupa Lubana Performance optimization of inter-satellite optical wireless system using linearly polarized modes (Оптимизация производительности межспутниковой оптической беспроводной системы с использованием линейно поляризованных мод) [in English] // Opticheskii Zhurnal. 2021. V. 88. № 10. P. 39–49. http://doi.org/10.17586/1023-5086-2021-88-10-39-49

For citation (Journal of Optical Technology):

Sanmukh Kaur, Vishakha Tyagi, and Anurupa Lubana, "Performance optimization of an intersatellite optical wireless system using linearly polarized modes," Journal of Optical Technology. 88(10), 579-586 (2021). https://doi.org/10.1364/JOT.88.000579

Abstract:

Modern optical communication has advanced from the usage of merely lengthy optical fibres to utilizing features of the powerful wireless system and optics resulting in the use of lasers to transmit data at a much greater rate. This gave way to optical wireless communication system to grow its root into space communications. In this work, an intersatellite optical wireless communication link has been analysed for studying the performance of the system considering linearly polarized modes. The link performance has been investigated in terms of quality factor (Q factor) as a function of transmission wavelength, detector type, data rate, distance, transmitter aperture diameter and pointing error angle. The optimized results of the system reveal that LP01 mode performs better with non-return to zero modulation scheme at 850 nm wavelength utilizing PIN photo-diode.

Keywords:

intersatellite optical wireless communication, low Earth Orbit (LEO), linearly polarized (LP) modes, spatial Continuous wave laser (SCWL), optical wireless communication (OWC), quality factor

OCIS codes: 140.0140, 060.2605, 060.3510, 060.4080

References:

1. Hamza A.S., Deogun J.S., Alexander D.R. A classification framework for free-space-optical communication links and systems // IEEE Communications Surveys & Tutorials. 2018. V. 21(2). P. 1346–1382.
2. Kaur S. Performance analysis of FSO link under the effect of fog in Delhi region, India // Journal of Optical Communications (published online ahead of print 2020), 000010151520200151. doi: https://doi.org/10.1515/joc_2020-0151
3. Kaur Sanmukh, Kakati Amayika. Analysis of free space optics link performance considering the effect of different weather conditions and modulation formats for terrestrial communication // Journal of Optical Communications. 2020. V. 41. № 4. P. 463–468. https://doi.org/10.1515/joc-2018-0010
4. Kaushal H., Kaddoum G. Optical communication in space: Challenges and mitigation techniques // IEEE communications surveys & tutorials. 2016. V. 19(1). P. 57–96.
5. Kumar N. 2.50 Gbit/s optical wireless communication system using PPM modulation schemes in HAP-tosatellite links // Optik. 2014. V. 125(14). P. 3401–3404.
6. Vazquez M.A., Perez-Neira A., Christopoulos D., Chatzinotas S., Ottersten B., Arapoglou P.D., Tarocco G. Precoding in multibeam satellite communications: Present and future challenges // IEEE Wireless Communications. 2016. V. 23(6). P. 88–95.
7. Vijayakumari P., Sumathi M. Physical implementation of underwater optical wireless system using spatial mode laser sources with optimization of spatial matching components // Results in Physics. 2019. V. 14. P. 102503.
8. Wang W.C., Wang H.Y., Lin G.R. Ultrahigh-speed violet laser diode based free-space optical communication beyond 25 Gbit/s // Scientific reports. 2018. V. 8(1). P. 1–7.

9. Chi. Y.C., Hsieh D.H., Tsai C.T., Chen H.Y., Kuo H.C., Lin G.R. 450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM // Optics Express. 2015. V. 23(10). V. 13051–13059.
10. Esmail M.A., Ragheb A., Fathallah H., Alouini M.S. Investigation and demonstration of high speed fulloptical hybrid FSO/fiber communication system under light sand storm condition // IEEE Photonics Journal. 2016. V. 9(1). P. 1–12.
11. Rosenkranz W., Schaefer S. Receiver design for optical inter-satellite links based on digital signal processing // In 2016 18th International Conference on Transparent Optical Networks (ICTON). 2016, July. Trento, Italy P. 1–4.
12. Vimal K., Prince S. System analysis for optimizing various parameters to mitigate the effects of satellite vibration on inter-satellite optical wireless communication // In 2015 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES). 2015, February. NIT Calicut, Kozhikode, Kerala, India. P. 1–4.
13. Pradhan S., Sahu P.K., Giri R.K., Patnaik B. Inter-satellite optical wireless communication system design using diversity techniques // 2015 International Conference on Microwave, Optical and Communication Engineering (ICMOCE). 2015, December. Bhubaneswar, India. P. 250–253.
14. Bloom S., Korevaar E., Schuster J., Willebrand H. Understanding the performance of free-space optics // Journal of optical Networking. 2003. V. 2(6). P. 178–200.
15. Arnon S. Performance of a laser μsatellite network with an optical preamplifier // JOSA A. 2005. V. 22(4). P. 708–715.
16. Chaudhary Sushank, Angela Amphawan. H igh speed MDM-Ro-FSO communication system by incorporating AMI scheme // International Journal of Electronics Letters. 2019. V. 7.3. P. 304–310.
17. Ivaniga Tomáš, Petr Ivaniga. Comparison of the optical amplifiers EDFA and SOA based on the BER and Q-Factor in C-Band // Hindawi Advances in Optical Technologies. V. 2017. Article ID 9053582. 9 p. https://doi.org/10.1155/2017/9053582
18. Zhu Z., Zhao S., Li Y., Li X. Performance comparison of analogue inter-satellite microwave photonics link using intensity modulation with direct detection and phase modulation with interferometric detection // IET Optoelectronics. 2014. V. 9(2). P. 88–95.
19. Kaur S. Analysis of inter-satellite free-space optical link performance considering different system parameters // Opto-Electronics Review. 2019. V. 27(1). P. 10–13.
20. Jurado-Navas A., Garrido-Balsells J.M., Paris J.F., Castillo-Vázquez M., Puerta-Notario A. Impact of pointing errors on the performance of generalized atmospheric optical channels // Optics express. 2012. V. 20(11). P. 12550–12562.
21. Amanor D.N., Edmonson W.W., Afghah F. Intersatellite communication system based on visible light // IEEE Transactions on Aerospace and Electronic Systems. 2018. V. 54(6). P. 2888–2899.
22. Kharraz O., Forsyth D. (2013). Performance comparisons between PIN and APD photodetectors for use in optical communication systems // Optik. V. 124(13). P. 1493–1498.
23. Barry J.R. Wireless infrared communications. New York: Springer Science & Business Media, 1994. V. 280. P. 67–70.
24. Amanor D.N., Edmonson W.W., Fatemeh Afghah. Intersatellite communication system based on visible light // IEEE transactions on aerospace and electronic systems. 2018. V. 54.6. P. 2888–2899.
25. Kaur P., Gupta A., Chaudhary M. Comparative analysis of inter satellite optical wireless channel for NRZ and RZ modulation formats for different levels of input power // Procedia Computer Science. 2015. V. 58. P. 572–577.