DOI: 10.17586/1023-5086-2021-88-10-50-58
УДК: 535-31, 577.342, 621.384.4
Shortwave excilamps as effective sources of radiation for inactivation of viruses and bacteria
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Соснин Э.А., Скакун В.С., Панарин В.А., Авдеев С.М., Сорокин Д.А. Коротковолновые эксилампы — эффективные источники излучения для инактивации вирусов и бактерий // Оптический журнал. 2021. Т. 88. № 10. С. 50–58. http://doi.org/10.17586/1023-5086-2021-88-10-50-58
Sosnin E.A., Skakun V.S., Panarin V.A., Avdeev S.M., Sorokin D.A. Shortwave excilamps as effective sources of radiation for inactivation of viruses and bacteria [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 10. P. 50–58. http://doi.org/10.17586/1023-5086-2021-88-10-50-58
É. A. Sosnin, V. S. Skakun, V. A. Panarin, S. M. Avdeev, and D. A. Sorokin, "Shortwave excilamps as effective sources of radiation for inactivation of viruses and bacteria," Journal of Optical Technology. 88(10), 587-592 (2021). https://doi.org/10.1364/JOT.88.000587
The modern level of research on the inactivation of viruses, bacteria, and living cells under the influence of ultraviolet radiation from excilamps is presented. Special attention is paid to the inactivation of viruses, which is relevant in connection with the spread of coronavirus infections. It has been shown that UVC excilamps, emitting in the wavelength range of 200–240 nm, are an alternative to classical sources of ultraviolet radiation for inactivating viruses. They can be used alone or in combination with known sources (e.g., LEDs, low pressure mercury lamps). A forecast was made for the development of a new technology for disinfecting air and surfaces from infectious agents of various etiologies.
bactericidal and viricidal action, coronavirus, excilamp, UVC radiation
Acknowledgements:The authors express their deep gratitude to their colleagues in the Department of Microbiology and Virology of the Siberian State Medical University (Russia, Tomsk), the Department of Cytology and Genetics of Tomsk State University (Russia, Tomsk) and the Faculty of Biomedical Engineering of the University of Eindhoven (the Netherlands, Eindhoven) for their assistance in studying the effect of the ultraviolet radiation of excilamps on microorganisms.
This article was prepared within the framework of the State Assignment of the IHCE SB RAS, project no. FWRM-2021-0014.
OCIS codes: 000.1430, 230.6080, 260.7190, 350.5130
References:1. É. A. Sosnin, “Areas in which vacuum ultraviolet excilamps are used (Review),” J. Opt. Technol. 79(10), 659–666 (2012) [Opt. Zh. 79(10), 66–76 (2012)].
2. V. F. Tarasenko and É. A. Sosnin, “Barrier-discharge excilamps: history, operating principle, prospects,” J. Opt. Technol. 79(10), 653–658 (2012). [Opt. Zh. 79(10), 58–65 (2012)].
3. A. M. Bo˘ıchenko, M. I. Lomaev, A. N. Panchenko, É. A. Sosnin, and V. F. Tarasenko, Ultraviolet and Vacuum-Ultraviolet Excilamps: Physics, Technology, and Applications (STT Publishing, Tomsk, 2011).
4. É. A. Sosnin, V. F. Tarasenko, and M. I. Lomaev, UV and VUV Excilamps (Lambert Academic Publishing, Saarbrücken, Germany, 2012).
5. G. A. Volkova, N. N. Kirillova, E. N. Pavlovskaya, I. V. Podmoshenski˘ı, and A. V. Yakovleva, “Lamp for irradiation in the vacuum ultraviolet region of the spectrum,” USSR patent 972249 (1982).
6. É. A. Sosnin, S. M. Avdeev, V. F. Tarasenko, V. S. Skakun, and D. V. Shitts, “Barrier-discharge KrCl excilamps: energy characteristics and applications (review),” Prib. Tekh. Eksp. 3, 5–15 (2015).
7. F. Gates, “A study of the bacterial action of ultraviolet light: III. The absorption of ultraviolet by bacteria,” J. Gen. Physiol. 14(1), 31–42 (1930).
8. W. Harm, Biological Effects of Ultraviolet Radiation (Cambridge University Press, Cambridge, UK, 1976).
9. T. Oppenländer, Photochemical Purification of Water and Air (Wiley-Vch Verlag, Weincheim, 2003).
10. Yu. A. Vladimirov and A. Ya, “Potapenko,” in Physicochemical Foundations of Photobiological Processes (Vysshaya Shkola, Moscow, 1989).
11. K. Tosa and T. Hirata, “Photoreactivation of enterohemorrhagic Escherichia coli following UV disinfection,” Water Res. 33(2), 361–366 (1999).
12. O. Hoyer, “Testing performance and monitoring of UV systems for drinking water disinfection,” Water Supply 16(1), 424–429 (1998).
13. G. von Sonntag, “Disinfection with UV-radiation,” in Process Technologies for Water Treatment, Earlier Brown Boveri Symposia (1987), pp. 159–177.
14. S.-J. Kim, D.-K. Kim, and D.-H. Kang, “Using UVC light-emitting diodes at wavelengths of 266 to 279 nanometers to inactivate food-borne pathogens and pasteurize sliced cheese,” Appl. Environ. Microbiol. 82(1), 11–17 (2016).
15. S. M. Avdeev, E. A. Sosnin, K. Yu. Velichevskaya, and L. V. Lavrent’eva, “Comparative study of UV radiation action of XeBr-excilamp and conventional low-pressure mercury lamp on bacteria,” Proc. SPIE 6938, 693813 (2008).
16. O. S. Zhdanova, É. A. Sosnin, E. P. Krasnozhenov, S. M. Avdeev, V. F. Tarasenko, and A. V. Gritsuta, “Sensitivity of causative agents of nosocomial infections to ultraviolet radiation with a wavelength of 283 nm,” J. Infect. Pathol. 17(3), 62–64 (2010).
17. E. A. Sosnin, E. Stoffels, M. V. Erofeev, I. E. Kieft, and S. E. Kunts, “The effects of UV irradiation and gas plasma treatment on living mammalian cells and bacteria: a comparative approach,” IEEE Trans. Plasma Sci. 32(4), 1544–1550 (2004).
18. M. V. Erofeev, I. E. Kieft, E. A. Sosnin, and E. Stoffels, “UV excimer lamp irradiation of fibroblasts: the influence on antioxidant homeostasis,” IEEE Trans. Plasma Sci. 34(4), 1359–1368 (2006).
19. E. A. Sosnin, L. V. Lavrent’eva, Ya. V. Masterova, M. V. Erofeev, and V. F. Tarasenko, “Bactericidal iodine lamp excited by capacitive discharge,” Tech. Phys. Lett. 30(7) 615–617 (2004).
20. G. Rontó, S. Gáspár, and A. Bérces, “Phages T7 in biological UV dose measurement,” J. Photochem. Photobiol. B 12(3), 285–294 (1992).
21. E. A. Sosnin, V. F. Tarasenko, O. S. Zhdanova, and E. P. Krasnozhenov, “Excilamps—a new tool for photobiological research,” Biotekhnosfera 3–4, 52–59 (2012).
22. S. E. Beck, H. B. Wright, T. M. Hargy, T. C. Larason, and K. G. Linden, “Action spectra for validation of pathogen disinfection in medium-pressure ultraviolet (UV) systems,” Water Res. 70(3), 27–37 (2015).
23. J. C. Sutherland, “Biological effects of polychromatic light,” Photochem. Photobiol. 76(2), 164–170 (2002).
24. A. M. Rauth, “Physical state of viral nucleic acid and sensitivity of viruses to ultraviolet light,” Biophys. J. 5(3), 257–273 (1965).
25. H. Mamane-Gravetz, K. G. Linden, A. Cabaj, and R. Sommer, “Spectral sensitivity of Bacillus subtilis spores and MS2 Coliphage for validation testing of ultraviolet reactors for water disinfection,” Environ. Sci. Technol. 39(20), 7485–7852 (2005).
26. F. Urbach, The Biological Effects of Ultraviolet Radiation (Pergamon, Oxford, 1969).
27. M. Buonanno, G. Randers-Pehrson, A. W. Bigelow, S. Trivedi, F. D. Lowy, H. M. Spotnitz, S. M. Hammer, and D. J. Brenner, “207-nmUV light—a promising tool for safe low-cost reduction of surgical site infections. I: In vitro studies,” PLoS One 8(10), e76968 (2013).
28. M. Buonanno, B. Ponnaiya, D. Welch, M. Stanislauskas, G. Randers-Pehrson, L. Smilenov, F. D. Lowy, D. M. Owens, and D. J. Brenner, “Germicidal efficacy and mammalian skin safety of 222-nm UV light,” Radiat. Res. 187(4), 493–501 (2017).
29. N. Yamano, M. Kunisada, S. Kaidzu, S. Sugihara, A. Nishiaki-Sawada, H. Ohashi, A. Yoshioka, T. Igarashi, A. Ohira, M. Tanito, and C. Nishigori, “Long-term effects of 222-nm ultraviolet radiation C sterilizing lamps on mice susceptible to ultraviolet radiation,” Photochem. Photobiol. 96(4), 853–862 (2020).
30. S. Kaidzu, S. Sugihara, M. Sasaki, A. Nishiaki, T. Igarashi, and M. Tanito, “Evaluation of acute corneal damage induced by 222-nm and 254-nm ultraviolet light in Sprague-Dawley rats,” Free Radical Res. 53(6), 611–617 (2019).
31. D. Welch, M. Buonanno, V. Grilj, I. Shuryak, C. Crickmore, A. W. Bigelow, G. Randers-Pehrson, G. W. Johnson, and D. J. Brenner, “Far-UVC light: a new tool to control the spread of airborne-mediated microbial diseases,” Sci. Rep. 8(1), 2752 (2018).
32. M. Buonanno, D. Welch, I. Shuryak, and D. J. Brenner, “Far-UVC light efficiently and safely inactivates airborne human coronaviruses,” Sci. Rep. 10(6), 10285 (2018).
33. H. Kitagawa, T. Nomura, T. Nazmul, K. Omori, N. Shigemoto, T. Sakaguchi, and H. Ohge, “Effectiveness of 222-nm ultraviolet light on disinfecting SARS-CoV-2 surface contamination,” Am. J. Infect. Control 49(3), 299–301 (2021).
34. R. T. Robinson, N. Mahfooz, O. Rosas-Mejia, Y. Liu, and N. M. Hull, “SARS-CoV-2 disinfection in aqueous solution by UV222 from a krypton chlorine excilamp,” medRxiv 2021.02.19.21252101 (2021).
35. B. Ma, Y. S. Linden, P. M. Gundy, Ch. P. Gerba, M. D. Sobsey, and K. G. Linden, “Inactivation of coronaviruses and phage Phi6 from irradiation across UVC wavelengths,” Environ. Sci. Technol. Lett. 8, 425–430 (2021).
36. L. Horton, A. E. Torres, S. Narl, A. B. Lyons, I. Kohli, J. M. Gelfand, D. M. Ozog, I. H. Hamzavi, and H. W. Lim, “Spectrum of virucidal activity from ultraviolet to infrared radiation,” Photochem. Photobiol Sci. 19(10), 1262–1270 (2020).
37. W. Taylor, E. Camilleri, D. L. Craft, G. Korza, M. R. Granados, J. Peterson, R. Szczpaniak, S. K. Weller, R. Moeller, T. Douki, W. W. K. Mok, and P. Setlow, “DNA damage kills bacterial spores and cells exposed to 222-nanometer UV radiation,” Appl. Environ. Microbiol. 86(8), e03039-19 (2020).
38. É. A. Sosnin, S. M. Avdeev, V. S. Skakun, V. A. Panarin, D. S. Pechenitsin, and D. A. Sorokin, “Radiation source,” Russian patent RU 205117 (2021).