ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2021-88-10-65-77

УДК: 535.015

Analyzing the optical modes and vortex signals in an optical fiber by means of side illumination

For Russian citation (Opticheskii Zhurnal):

Виноградова И.Л., Салихов А.И., Мешков И.К., Гизатулин А.Р., Султанов А.Х., Багманов В.Х. Анализ оптических мод и вихревых сигналов в оптоволокне методом бокового просвечивания // Оптический журнал. 2021. Т. 88. № 10. С. 65–77. http://doi.org/10.17586/1023-5086-2021-88-10-65-77

 

Vinogradova I.L., Salikhov A.I., Meshkov I.K., Gizatulin A.R., Sultanov A.Kh., Bagmanov V.Kh. Analyzing the optical modes and vortex signals in an optical fiber by means of side illumination [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 10. P. 65–77. http://doi.org/10.17586/1023-5086-2021-88-10-65-77

For citation (Journal of Optical Technology):

I. L. Vinogradova, A. I. Salikhov, I. K. Meshkov, A. R. Gizatulin, A. Kh. Sultanov, and V. Kh. Bagmanov, "Analyzing the optical modes and vortex signals in an optical fiber by means of side illumination," Journal of Optical Technology. 88(10), 597-605 (2021). https://doi.org/10.1364/JOT.88.000597

Abstract:

This article discusses a new method for instrumentally (experimentally) finding the mode-distribution parameters of an optical signal propagating along an optical fiber. The proposed method is based on illuminating the optical fiber from the side, followed by investigating the image for the linear and nonlinear (with the Kerr component) cases and then recalculating the mode parameters using the proposed technique. Unlike known methods of analyzing mode distributions that operate only with end irradiation of the optical fiber and are implemented only at definite points of a line with an intermittent signal transmitted along it, the proposed method does not assume breakage of the optical line and can be used at any point along it. The measurement layout is based on the well-known experimental apparatus, intended to obtain the refractive-index profile of an optical fiber. In addition to the known layout, it is proposed to make measurements at various angular positions of the optical fiber of interest and at various longitudinal positions along it. The proposed method can be implemented when the signal that propagates along the optical fiber is characterized by increased intensity, and this makes it possible to record the nonlinear (Kerr) component of the main refractive-index profile.

Keywords:

mode compositions in optical fiber, nonlinear refractivity variation, refractive-index profile, mode weight coefficients, side illuminating of the optical fiber

Acknowledgements:

This study was carried out with the help of a grant of the Ministry of Science and Higher Education of the Russian Federation as part of the work on State Assignment of FSBEI HE USATU No. FEUE-2020-0007 on the topic “Theoretical foundations of modeling and semantic analysis of the processes of transformation of vortex electromagnetic fields in infocommunication systems.”

OCIS codes: 060.2300, 060.2330

References:

1. “Nortel at OFC/NFOEC: bandwidth demand,” http://nag.ru/news/newsline/14952/nortel-na-konferencii-ofc-nfoec-spros-na-polosu-propuskaniya.html.
2. S. Ten, K. Tauri, M. Sharma, and S. Lobanov, “The requirements on optical communication fibers with the development of a 100-Gbit/s transport system,” Foton-Ekspress (7), 22–26 (2020).
3. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45, 8185 (1992).
4. S. Niknam, A. Roy, and H. S. Dhillon, “Intelligent O-RAN for beyond 5G and 6G wireless networks,” arXiv:2005.08374 (2020).
5. A. Dutta, “Mode analysis of different step index optical fibers at 1064 nm for high-power fiber laser and amplifier,” Int. J. Electron. Commun. Technol. 6(3), 74–77 (2015).
6. J. Zhang, Z. Wu, T. Huang, X. Shao, and P. Shum, “Modes effective refractive-index difference measurement in few-mode optical fiber,” Procedia Eng. 140, 77–84 (2016).
7. B. Mao, Y. Liu, H. Zhang, K. Yang, Y. Han, Z. Wang, and Z. Li, “Complex analysis between CV modes and OAM modes in fiber systems,” Nanophotonics 8(2), 271–285 (2019).
8. M. Gong, Y. Yuan, C. Li, P. Yan, H. Zhang, and S. Liao, “Numerical modeling of transverse mode competition in strongly pumped multimode fiber lasers and amplifiers,” Opt. Express 15(6), 3236–3246 (2007).
9. V. A. So˘ıfer, Diffraction Computer Optics (Fizmatlit, Moscow, 2007).
10. S. Blin, D. M. Nguyen, T. N. Nguyen, L. Provino, M. Thual, and T. Chartier, “Simple modal-analysis method for multi-mode fibers,” in 35th European Conference on Optical Communication, Vienna, Austria, Sept. 20–24, 2009.
11. H. Pang, T. Haecker, A. Bense, T. Haist, and D. Flamm, “Focal field analysis of highly multi-mode fiber beams based on modal decomposition,” Appl. Opt. 59(22), 6584–6592 (2020).
12. D. Gray, M. Petrovich, S. Sandoghchi, N. Wheeler, N. Baddela, G. Jasion, T. Bradley, D. Richardson, and F. Poletti, “Real-time modal analysis via wavelength-swept spatial and spectral (S2) imaging,” IEEE Photon. Technol. Lett. 28(9), 1034–1037 (2016).
13. B. I. Molochnikov, V. N. Morozov, I. S. Vasil’eva, G. V. Morozova, and Z. V. Gorlova, “Method of measuring the refractive-index profile of the core of fiber lightguides,” USSR Patent SU 1430837, G 01 N 21/41 (1988).
14. E. A. Subbotin, Methods of Measuring the Parameters of Optical Telecommunication Systems (Goryachaya Liniya—Telekom, Moscow, 2013).
15. F. Ahmed, V. Ahsani, S. Jo, C. Bradley, E. Toyserkani, and M. B. G. Jun, “Measurement of in-fiber refractive index change using a Mach–Zehnder interferometer,” IEEE Photon. Technol. Lett. 31(1), 74–77 (2019).
16. M. Azkune, A. Ortega-Gomez, I. Ayesta, and J. Zubia, “Refractive-index profile reconstruction in graded-index polymer optical fibers using Raman spectroscopy,” Materials 13, 2251 (2020).
17. T. Yamada, Y. Ohsato, M. Yoshinuma, T. Tanaka, and K. Itoh, “Arc fusion splicer with profile alignment system for high-strength low-loss optical submarine cable,” J. Lightwave Technol. 4(8), 1204–1210 (1986).
18. A. B. Androsik, S. A. Vorob’ev, and S. D. Mirovitskaya, “Method of focusing to measure the geometrical–optical parameters of lightguides,” Tekh. Nauki Teor. Prakt. 11(24), 116–125 (2013).

19. L. M. Baskin, M. Sumetsky, P. S. Westbrook, P. I. Reyes, and B. J. Eggleton, “Accurate characterization of fiber Bragg grating index modulation by side-diffraction technique,” IEEE Photon. Technol. Lett. 15(3), 449–451 (2003).
20. M. Aslund, J. Canning, and L. Poladian, “Novel characterization technique with 0.5-ppm spatial accuracy of period in Bragg gratings,” Opt. Express 11(8), 838–842 (2003).
21. D. B. Shumkova, Special Fiber Lightguides (Izd. Perm. Nats. Issled. Politekhn. Univ., Perm, 2011).
22. R. K. Luneburg, Mathematical Theory of Optics (University of California Press, Los Angeles, 1964).
23. V. V. Kotlyar and A. S. Melekhin, “The Abel transformation in problems of synthesizing gradient optical elements,” Komp’yut. Opt. 24, 48–52 (2002).
24. Yu. S. Kuzyutkina, E. A. Romanova, and A. I. Konyukhov, “Experimental methods of studying the nonlinear properties of optical glasses,” in Textbook for Students of the Physics Department Studying in Specialization 010701 of Physics (Izd. Saratovskogo Gos. Univ., Saratov, 2013).
25. K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, San Diego, 2006).
26. A. G. Hallam, Mode Control in Multimode Optical Fibre and Its Applications (Aston University, Birmingham, 2007).
27. O. V. Ivanov, S. A. Nikitov, and Yu. V. Gulyaev, “Cladding modes of optical fibers: properties and applications,” Phys. Usp. 49(2), 167–191 (2006) [Usp. Fiz. Nauk 49(2), 175–202 (2006)].
28. US5416862 mode conditioners (AT&T, 1993).
29. JP2000231027 mode conditioners (Hitachi, 1999).
30. JP2000147334 mode conditioners (Hitachi, 1998).
31. JP2000047065 mode conditioners (Hitachi, 1998).
32. X. Zhu, A. Schülzgen, H. Li, J. V. Moloney, and N. Peyghambarian, “Gaussian beam shaping based on multimode interference,” Proc. SPIE 7579, 75790M (2016).