DOI: 10.17586/1023-5086-2021-88-10-78-82
УДК: 621.373.8
Laser plasma–chemical treatment of optoelectronic materials
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Кондратенко В.С., Мальцев П.П., Редькин С.В. Лазерная плазмохимическая обработка оптоэлектронных материалов // Оптический журнал. 2021. Т. 88. № 10. С. 78–82. http://doi.org/10.17586/1023-5086-2021-88-10-78-82
Kondratenko V.S., Maltsev P.P., Redkin S.V. Laser plasma–chemical treatment of optoelectronic materials [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 10. P. 78–82. http://doi.org/10.17586/1023-5086-2021-88-10-78-82
V. S. Kondratenko, P. P. Mal’tsev, and S. V. Red’kin, "Laser plasma–chemical treatment of optoelectronic materials," Journal of Optical Technology. 88(10), 606-609 (2021). https://doi.org/10.1364/JOT.88.000606
In this study, elements of a new technology for the treatment of optoelectronic materials—laser plasma–chemical treatment—are investigated considering the splitting of diamond and sapphire wafers into crystals as an example. Copper vapor lasers and an ultraviolet laser with wavelengths of 510.6, 578.2, and 355 nm, respectively, are used in the experiments. The working pressure in the reactor is 1×10−3−1×10−1torr.
laser, crystalls, wafer, plasma chemistry, etching
Acknowledgements:The research was supported by the Russian Foundation for Basic Research, grant No. 19-07-00683A.
OCIS codes: 350 3390
References:1. M. Li and A. Held, “Meeting industry needs with laser micromachining,” Solid State Technol. 46(6), 41–46 (2003).
2. V. S. Kondratenko, “Method for cutting brittle materials,” Russian patent 2024441 (1994).
3. V. S. Kondratenko and S. A. Kudzh, “Precision cutting of glass and other brittle materials by laser-controlled thermo-splitting (review),” Glass Ceram. 74(3), 75–81 (2017).
4. N. V. Shchavruk, S. V. Redkin, A. A. Trofimov, N. E. Ivanova, A. S. Skripnichenko, V. S. Kondratenko, and V. V. Styran, “Partitioning very hard semiconductor sapphire wafers into monolithic integrated circuits using laser controlled thermal cleavage,” Russ. Microelectron. 46, 200–204 (2017).
5. V. V. Aristov, P. P. Mal’tsev, S. V. Red’kin, A. S. Skripnichenko, and V. Yu. Pavlov, “Method for precision laser plasma–chemical cutting of wafers,” Russian patent 2537101 (2014).
6. P. P. Mal’tsev, S. V. Red’kin, I. A. Glinskii, N. V. Poboikina, M. P. Doukhnovsky, Yu. Yu. Fedorov, A. K. Smirnova, E. N. Kulikov, S. V. Shcherbakov, I. A. Leont’ev, O. Yu. Kudryashov, and A. S. Skripnichenko, “Diamond-based heatsink for the power microwave MIC,” Nano- Mikrosist. Tekh. 18(4), 195–203 (2016).
7. P. P. Mal’tsev, S. V. Red’kin, A. S. Skripnichenko, and N. V. Poboikina, “Laser plasma–chemical etching as a method for breaking the wafers into crystals,” Fundam. Probl. RadioeleKtron. Priborostr. 17(2), 250–253 (2017).
8. S. A. Gamkrelidze, P. P. Mal’tsev, S. V. Red’kin, V. S. Kondratenko, A. S. Skripnichenko, and V. V. Styran, “Method for laser plasma-chemical cutting of wafers,” Russian patent 2731167 (2020).