DOI: 10.17586/1023-5086-2021-88-11-24-35
УДК: 531.2, 62-2, 624.04
Effect of adjustment structure design on laser stability
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
C. Zhang, G. X. Tang, Z. G. Liu, and J. Q. Zhu Effect of adjustment structure design on laser stability (Влияние конструкции юстировочного приспособления на стабильность характеристик лазера) [на англ. яз.] // Оптический журнал. 2021. Т. 88. № 11. С. 24–35. http://doi.org/10.17586/1023-5086-2021-88-11-24-35
C. Zhang, G. X. Tang, Z. G. Liu, and J. Q. Zhu Effect of adjustment structure design on laser stability (Влияние конструкции юстировочного приспособления на стабильность характеристик лазера) [in English] // Opticheskii Zhurnal. 2021. V. 88. № 11. P. 24–35. http://doi.org/10.17586/1023-5086-2021-88-11-24-35
C. Zhang, G. X. Tang, Z. G. Liu, and J. Q. Zhu, "Effect of adjustment structure design on laser stability," Journal of Optical Technology. 88(11), 630-638 (2021). https://doi.org/10.1364/JOT.88.000630
Output stability is crucial for a laser system or a laser oscillator. Moreover, the adjustment mechanism plays an important role in structural stability. In this study, we present an adjustment structure in view of the instability introduced by the adjustment mechanism. Results show that the improved structure greatly enhanced the stability of the optomechanical structure as opposed to the common structure. Driving and stability tests were conducted for both the common and improved adjustment structures with two kinematic optical mounts. The results further show that the improved structure achieves better position stability.
adjustment structure, laser stability, adjustment screw, angle shift, thermal shocking
Acknowledgements:The study was funded by the National Natural Science Foundation of China (NSFC) (61827816, 11875308 and 61675215), the Chinese Academy of Sciences Scientific Instrument Development Project (YJKYYQ20180024), the Shanghai Science and Technology Innovation Action Plan Project (19142202600), and China’s Collaborative Research, and Israel on Physics of Ultrashort Pulse Laser Plasma (19560713700).
The authors are grateful to the reviewers of the journal for their valuable comments and suggestions.
OCIS codes: 120.0120, 140.3430, 220.4880
References:1. Danson C.N., Haefner C., Bromage J., Butcher T., Chanteloup J.C.F., Chowdhury E.A., Galvanauskas A., Gizzi L.A., Hein J., Hillier D.I., Hopps N.Q., Kato Y., Khazanov E.A., Kodama R., Korn G., Li R.X., Li Y.T., Limpert J., Ma J.G., Nam C.H., Neely D., Papadopoulos D., Penman R.R., Qian L.J., Rocca J.J., Shaykin A.A., Siders C.W., Spindloe C, Szatmári S., Trines R.M.G.M., Zhu J.Q., Zhu P., Zuegel J.D. Petawatt and exawatt class lasers worldwide // High Power Laser Sci. and Eng. 2019. V. 7(3). P. 1–54.
2. Zhu J.Q., Zhu J., Li X.C., Zhu B.Q., Ma W.X., Lu X.Q., Fan W., Liu Z.G., Zhou S.L., Xu G., Zhang G.W., Xie X.L., Yang L., Wang J.F., Ouyang X.P., Wang L., Li D.W., Yang P.Q., Fan Q.T., Sun M.Y., Liu C., Liu D., Zhang Y.L., Tao H., Sun M.Z., Zhu P., Wang B.Y., Jiao Z.Y., Ren L., Liu D.Z., Jiao X., Huang H.B., Lin Z.Q. Status and development of high-power laser facilities at the NLHPLP // High Power Laser Sci. and Eng. 2018. V. 6(04). P. 21–43.
3. Zhu J.Q., Xie X.L., Sun M.Z., Kang J., Yang Q.W., Guo A.L., Zhu H.D., Zhu P., Gao Q., Liang X., Cui Z.R., Yang S.H., Zhang C., Lin Z.Q. Analysis and construction status of SG-II 5PW laser facility // High Power Laser Sci. and Eng. 2018. V. 6(02). P. 115–127.
4. Huang J.C., Wang L.K., Duan Y.F., Huang Y.F., Ye M.F., Liu L., Li T. All-fiber-based laser with 200 mHz linewidth // Chinese Opt. Lett. 2019. V. 17(7). P. 75–78.
5. Yan L.L., Zhang Y.Y., Tai T.Y., Zhang P., Zhang X.F., Guo W.G., Zhang S.G., Jiang H.F. Multi-cavity-stabilized ultrastable laser // Chinese Opt. Lett. 2018. V. 16(12). P. 121403.
6. Jia Y.C., Chen F. Compact solid-state waveguide lasers operating in the pulsed regime: A review // Chinese Opt. Lett. 2019. V. 17(1). P. 012302.
7. Liu F., Xu J., Zhang Y., Sun M.Y., Zhu J.Q. Analysis on beam directing stability problem caused by micro vibration of optical components // Acta Optica Sinica. 2011. V. 31(11). P. 247–253.
8. Zhang J.W., Zhou Y., Wang S.L., Jing F., Feng B., Lin D.H. Influences of switch mirror mount on beam direction under micro vibration excitation // High Power Laser and Particle Beams. 2008. V. 05. P. 779–783.
9. Giesen P., Folgering E. Design guidelines for thermal stability in opto-mechanical instruments // SPIE Internat. Symp. Optical Science & Technol. Internat. Soc. Optics and Photonics. 2003.
10. Jacobs S.T. Variable invariables: Dimensional instability with time and temperature // Proc. SPIE. 1992. V. 10265. P. 102650I.
11. Baskaran R., Sivakumar P., Arivuoli D. Dimensional stability of mirror materials for opto-mechanical reference systems // Internat. J. Phys. Sci. 2013. V. 8(19). P. 997–1004.
12. Ni Y., Kan C.X., He L.B. Alloyed Au-Ag nanorods with desired plasmonic properties and stability in harsh environments // Photonics Research. 2019. V. 7(5). P. 558–565.
13. Leahy Z.N., Magner A.J., Hatheway A.E. Athermal mounting of optics in metallic housings // Proc. SPIE — Optomechanical Eng. 2013. V. 8836. P. 88360P.
14. Dewitt A.D. Development of a mirror mount suitable for laboratory and OEM applications // Proc. SPIE – The Internat. Soc. Optical Eng. 2019. V. 11100.
15. Maggie K., Laird M.C., and Jared R.M. A locking clamp that enables high thermal and vibrational stability for kinematic optical mounts // Proc. SPIE – Adaptive Optics Systems VI. 2018. V. 10703. P. 107032Q.
16. Throlabs, Inc. Polaris® Low-Distortion Kinematic Mirror Mounts. https: //www.thorlabs.com/newgrouppage9. cfm?objectgroup_id=6356#7328
17. Zhu J.Q., Tang G.X., Liu Z.G. Micro-movement subassembly for angle adjustment // United States Patent 10,289,150 B2, Mar. 14. 2019.
18. Alex E.C., Jason M.M. Differential adjustment apparatus // United States Patent 2005/0066763 A1, Mar. 31. 2005.
19. John W. Tip/tilt mirror mounts deliver accuracy, stability // Laser Focus World: The Magazine for the Photonics & Optoelectronics Industry. 2014. V. 50(11). P. 32–39.
20. Tapply J.K., Derby E.A., Gordon C.G., Vukobratovich D., Yorder P.R., Zweben C.H. Optical testing technique for the evaluation of mechanical mount thermal stability // Proc. SPIE. 1999. V. 3786. P. 386–394.
21. Zona J.P., Willis C.L. Testing boresight stability of opto-mechanical subassemblies // Proc. SPIE. 2001. V. 4444.1. P. 196–206.
22. Bullock K.T., Deyoung R.J., Sandford S.P. Angular alignment testing of laser mirror mounts under temperature cycling // NASA Technical Reports Server. 1997. NASA-TP-3661.
23. Long W.J., Pan J.T., Guo X.Y., Liu X.H., Lin H.L., Zheng H.D., Yu J.H., HEYUAN Guan H.Y., Lu H.H., Zhong Y.C., Fu S.H., Zhang L., Zhu W.G., Chen Z. Optimized weak measurement of orbital angular momentum-induced beam shifts in optical reflection // Photonics Research. 2019. V. 7(11). P. 1273–1278.
24. Wang D.H., Zhao J, Zhao X.Q., Zhang Y. Measurement and analysis on structure stability of optical mirror mounts with small aperture // Chinese J. Lasers. 2010. V. 37(S1). P. 308–311.