ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2021-88-11-03-08

УДК: 530.18, 535

Localized surface plasmon polariton interference and relief nanograting formation

For Russian citation (Opticheskii Zhurnal):

Макин В.С., Макин Р.С. Интерференция локализованных поверхностных плазмон-поляритонов и образование нанорешеток рельефа // Оптический журнал. 2021. Т. 88. № 11. С. 3–8. http://doi.org/10.17586/1023-5086-2021-88-11-03-08

 

Makin V.S., Makin R.S. Localized surface plasmon polariton interference and relief nanograting formation [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 11. P. 3–8. http://doi.org/10.17586/1023-5086-2021-88-11-03-08

For citation (Journal of Optical Technology):

V. S. Makin and R. S. Makin, "Localized surface plasmon polariton interference and relief nanograting formation," Journal of Optical Technology. 88(11), 615-619 (2021). https://doi.org/10.1364/JOT.88.000615

Abstract:

Published experimental studies on femtosecond two-beam interference on metal and dielectric surfaces accompanied by the formation of additional diffractive nanostructures with substantially subwavelength spatial periods are analyzed. The formation of additional structures is explained using modern concepts of excitation of spatial (Bloch) modes of localized surface plasmon polaritons and evanescent waves guided by dynamic ridges (indents) of the interference relief. The simplicity of the experimental realization of the controllable formation of ordered nanostructures with dimensions substantially exceeding the classic Abbe diffraction limit allows their use for the development of devices with new functional properties, including quantum devices.

Keywords:

zinc oxide, acting laser radiation, surface plasmon polaritons (channel, wedge), interference, subwavelength structures, universal polariton model

OCIS codes: 140.3990, 190.4350, 240.6680, 050.6624, 320.2250

References:

1. J. Bonse, S. Holm, S. Kirner, A. Rosenfeld, and J. Kruger, “Laser-induced periodic surface structures (LIPSS)—a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 9000651 (2017).
2. V. S. Makin, R. S. Makin, A. Ya. Vorob’ev, and C. Guo, “Feigenbaum’s universality and Sharkovsky ordering in laser-induced periodic structures on the surfaces and in the bulk of condensed media,” in Nonlinearity in Modern Natural Science, G. G. Malinetskii, ed. (Izdatel’stvo LKI, 2009), pp. 303–322.
3. V. S. Makin, E. I. Logacheva, and R. S. Makin, “Localized surface plasmon polaritons and nonlinear overcoming of the diffraction optical limit,” Opt. Spectrosc. 188(4), 610–614 (2016) [Opt. Spektrosk. 120(4), 118–123 (2016)].
4. V. S. Makin, Yu. I. Pestov, and R. S. Makin, “Abnormal spatial nanogratings formation by long pulse laser radiation on condensed matter surfaces,” in Proceedings of the International Conference “Days on Diffraction” (2016), pp. 298–303.
5. N. A. Kirichenko, E. V. Barmina, and G. A. Shafeev, “Theoretical and experimental investigation of the formation of high spatial frequency periodic structures on metal surfaces irradiated by ultrashort laser pulses,” Phys. Wave Phenom. 26(4), 264–273 (2018).
6. R. Buividas, L. Rosa, R. Slipas, T. Kurdis, G. Slekis, V. V. Datsyk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via half-wavelength cavity feedback,” Nanotechnology 22(5), 5504 (2010).
7. T. Q. Jia, M. Baba, M. Suzuki, R. A. Ganeev, H. Kuroda, J. R. Qiu, X. Wang, R. Li, and Z. Xu, “Fabrication of two-dimensional periodic nanostructures by two-beam interference of femtosecond pulses,” Opt. Express 16(3), 1874–1878 (2008).
8. X. Jia, T. Jia, Y. Zhang, P. Xoing, D. Feng, Z. Sun, and Z. Xu, “Optical absorption of two-dimensional periodic microstructures on ZnO crystal fabricated by the interference of two femtosecond laser beams,” Opt. Express 18(14), 14401–14408 (2010).
9. S. Wang, L. Jiang, W. Han, J. Hu, Q. Wang, and Y. Lu, “Hierarchical laser induced periodic surface structures induced by femtosecond laser on the surface of a ZnO film,” Appl. Phys. Exp. 11, 052703 (2018).
10. K. Miyazaki, G. Miyaji, and T. Inoue, “Nanograting formation on metals in air with interfering femtosecond laser pulses,” Appl. Phys. Lett. 107, 071103 (2015).

11. V. M. Agranovich and A. A. Maradudin, Surface Polaritons (Nauka, Moscow, 1985).
12. V. S. Makin and R. S. Makin, “Nonlinear interaction of linearly polarized laser radiation with condensed media and overcoming the diffraction limit,” Opt. Spectrosc. 112(2), 162–167 (2012) [Opt. Spektrosk. 112(2), 193–198 (2012)].
13. A. Abdelmalek, Z. Bedrane, V. Bharadwaj, E.-H. Amara, R. Ramponi, and S. M. Eaton, “Generalized plasmonic modeling of the effect of refractive index on laser-induced periodic nanostructures,” J. Mater. Appl. 8(2), 73–79 (2019).