ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2021-88-11-72-79

УДК: 535, 004

Design and performance analysis of deterministic iSWAP gate using a resonator as coupler

For Russian citation (Opticheskii Zhurnal):

Amit Kumar Sharma, Ritu Sharma Design and performance analysis of deterministic iSWAP gate using a resonator as coupler (Конструкция и характеристики детерминированного iSWAP-вентиля на основе фотонных кубитов с использованием резонатора в качестве ответвителя) // Оптический журнал. 2021. Т. 88. № 11. С. 72–79. http://doi.org/10.17586/1023-5086-2021-88-11-72-79

 

Amit Kumar Sharma, Ritu Sharma Design and performance analysis of deterministic iSWAP gate using a resonator as coupler (Конструкция и характеристики детерминированного iSWAP-вентиля на основе фотонных кубитов с использованием резонатора в качестве ответвителя) [in English] // Opticheskii Zhurnal. 2021. V. 88. № 11. P. 72–79. http://doi.org/10.17586/1023-5086-2021-88-11-72-79

For citation (Journal of Optical Technology):

Amit Kumar Sharma and Ritu Sharma, "Design and performance analysis of a deterministic iSWAP gate using a resonator as a coupler," Journal of Optical Technology. 88(11), 666-671 (2021). https://doi.org/10.1364/JOT.88.000666

Abstract:

In this paper quantum process tomography of the designed photonic Qubit based deterministic iSWAP gate has been done and compared with the ideal iSWAP gate.
The gate is designed and simulated using a resonator as a coupler. The performance (fidelity and concurrence) of the designed iSWAP gate has been analytically investigated. The effect of cavity parameters (coupling strength and cavity mode decay rate) on performance of the designed iSWAP gate has been observed. The maximum fidelity 47.06% is obtained at coupling strength 0.02 and cavity mode decay rate 0.0005 and the maximum concurrence 0.474 is obtained at coupling strength 0.02 and cavity mode decay rate 0.
The research search work reported in this paper can be used for further investigation and implementation of quantum information processing systems.

Keywords:

quantum process tomography, micro cavity, quantum gate, quantum dot, linear optics

OCIS codes: 270.0270, 270.5585

References:

1. Cerf N.J., Adami C., Kwiat P.G. Optical simulation of quantum logic // Phys. Rev. A. 1998. V. 57. № 3. P. R1477–1480.
2. Knill E., Laflamme R., Milburn G.J. A scheme for efficient quantum computation with linear optics // Nature. 2001. V. 409. № 6816. P. 46–52.
3. Wang H.-F., Wen J.-J., Zhu A.-D., Zhang S., Yeon K.-H. Deterministic CNOT gate and entanglement swapping for photonic Qubits using a quantum-dot spin in a double-sided optical microcavity // Phys. Lett. A. 2013. V. 377. № 40. P. 2870–2876.
4. Kok P., Munro W.J., Nemoto K., Ralph T.C., Dowling J.P., Milburn G.J. Linear optical quantum computing with photonic Qubits // Rev. Mod. Phys. 2007. V. 79. № 1. P. 135–174.
5. Wei H.-R., Deng F.-G. Universal quantum gates on electron-spin Qubits with quantum dots inside single-side optical microcavities // Opt. Exp. 2014. V. 22. № 1. P. 593–607.
6. Hu C.Y., Munro W.J., O’Brien J.L., Rarity J.G. Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity // Phys. Rev. B. 2009. V. 80. № 20. P. 205326.
7. Wei H.-R., Deng F.-G. Scalable photonic quantum computing assisted by quantum-dot spin in double sided optical microcavity // Opt. Exp. 2013. V. 21. № 15. P. 17671–17685.
8. Wang H.-F., Zhu A.-D., Zhang S., Yeon K.-H. Optically controlled phase gate and teleportation of a controlled-NOT gate for spin Qubits in a quantum-dot–microcavity coupled system // Phys. Rev. A. 2013. V. 87. № 6. P. 062337.
9. Gueddana A., Gholami P., Lakshminarayanan V. Can a universal quantum cloner be used to design an experimentally feasible near-deterministic CNOT gate? // Quantum Inf. Process. 2019. V. 18. № 7. P. 1–12.
10. Li T., Yang G.-J., Deng F.-G. Heralded quantum repeater for a quantum communication network based on quantum dots embedded in optical microcavities // Phys. Rev. A. 2016. V. 93. № 1. P. 012302.
11. Hu C.Y. Spin-based single-photon transistor, dynamic random access memory, diodes, and routers in semiconductors // Phys. Rev. B. 2016. V. 94. № 24. P. 245307.
12. Barenco A., Bennett C.H., Cleve R., DiVincenzo D.P., Margolus N., Shor P., Sleator T., Smolin J.A., Weinfurter H. Elementary gates for quantum computation // Phys. Rev. A. 1995. V. 52. № 5. P. 3457–3467.
13. Wang H.-F., Shao X.-Q., Zhao Y.-F., Zhang S., Yeon K.-H. Scheme for implementing linear optical quantum iSWAP gate with conventional photon detectors // JOSA B. 2009. V. 27. № 1. P. 27.
14. Zhou L., Sheng Y.-B. Concurrence measurement for the two-Qubit optical and atomic states // Entropy. 2015. V. 17. № 6. P. 4293–4322.