DOI: 10.17586/1023-5086-2021-88-11-80-89
УДК: 535.015, 681.7.068
Structural characteristics of internal microcavities produced in optical fiber via the fuse effect
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Конин Ю.А., Щербакова В.А., Булатов М.И., Мальков Н.А., Луценко А.С., Стариков С.С., Грачев Н.А., Перминов А.В., Петров А.А. Исследование характеристик оптического волокна с внутренней структурой микронеоднородностей, сформированной с помощью эффекта плавления // Оптический журнал. 2021. Т. 88. № 11. С. 80–89. http://doi.org/10.17586/1023-5086-2021-88-11-80-89
Konin Yu.A., Scherbakova V.A., Bulatov M.I., Malkov N.A., Lutsenko A.S., Starikov S.S., Grachev N.A., Perminov A.V., Petrov A.A. Structural characteristics of internal microcavities produced in optical fiber via the fuse effect [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 11. P. 80–89. http://doi.org/10.17586/1023-5086-2021-88-11-80-89
Yu. A. Konin, V. A. Scherbakova, M. I. Bulatov, N. A. Malkov, A. S. Lucenko, S. S. Starikov, N. A. Grachev, A. V. Perminov, and A. A. Petrov, "Structural characteristics of internal microcavities produced in optical fiber via the fuse effect," Journal of Optical Technology. 88(11), 672-677 (2021). https://doi.org/10.1364/JOT.88.000672
We discuss the internal structure of microcavities in single-mode and multi-mode acrylate- and polyimide-clad optical fibers due to fusion occurring as a plasma spark propagates through the core. The calculated plasma propagation speed was 61±2cm/s. The structure of the microcavities was studied from the end and side surfaces of the fibers, and the microcavities had sizes of 2.7±0.5µm and 5.6±0.7µm, respectively, when viewed from each of these two directions. The ultimate strengths of damaged and undamaged single-mode fibers were determined via two-point bending and the axial tension method. It was experimentally determined that following the damage to the core, the flexure strength of fibers with each type of protective coating decreased by 5%–8%, while the tensile strength of the fibers with polyimide coating decreased by 72%–83%, and the tensile strength of the fibers with acrylate coating decreased by 26%–30%.
fiber optics, single-mode and multi-mode optical fibers, optical fiber properties, optical fiber strength, optical fiber fuse effect
Acknowledgements:This research was carried out with the financial support of the Ministry of Science and Higher Education of the Russian Federation in the framework of the program of activities of the Perm Scientific and Educational Center “Rational Subsoil Use.”
OCIS codes: 060.2400, 050.2230
References:1. R. Kashyap and K. Blow, “Observation of catastrophic self-propelled self-focusing in optical fibres,” Electron. Lett. 24(1), 47–49 (1988).
2. R. Kashyap, “Self-propelled self-focusing damage in the optical fibres,” in Proceedings of the Tenth International Conference on Lasers and Applications (Lasers ’87) (1988), pp. 859–866.
3. R. Kashyap, A. H. Sayles, and G. Cornwell, “Heat-flow modeling and visualization of catastrophic self-propagating damage in single-mode optical fibers at low powers,” Proc. SPIE 2966, 586–591 (1996).
4. D. P. Hand and P. St. J. Russell, “Solitary thermal shock waves and optical damage in optical fibers: the fiber fuse,” Opt. Lett. 13(9), 767–769 (1988).
5. D. D. Davis, Jr., S. C. Mettler, and D. J. DiGiovanni, “Experimental data on the fiber fuse,” Proc. SPIE 2714, 202–210 (1995).
6. D. D. Davis, Jr., S. C. Mettler, and D. J. DiGiovanni, “Comparative evaluation of fiber fuse models,” Proc. SPIE 2966, 592–606 (1996).
7. S. I. Yakovlenko, “On reasons for strong absorption of light in an optical fibre at high temperature,” Quantum Electron. 34(9), 787–789 (2004).
8. S. Todoroki, “In-situ observation of fiber-fuse propagation,” Japan. J. Appl. Phys. 44(6R), 4022–4024 (2005).
9. S. Todoroki, “Animation of fiber fuse damage, demonstrating periodic void formation,” Opt. Lett. 30(19), 2551–2553 (2005).
10. I. A. Bufetov, A. A. Frolov, E. M. Dianov, V. Fortov, and V. Efremov, “Dynamics of fiber fuse propagation,” in Optical Fiber Communication Conference (OFC) (2005), paper OThQ7.
11. S. I. Yakovlenko, “Plasma behind the front of a damage wave and the mechanism of laser-induced production of a chain of caverns in an optical fibre,” Quantum Electron. 34(8), 765–770 (2004).
12. M. F. Domingues, T. Paixão, E. Mesquita, N. Alberto, P. Antunes, H. Varum, and P. S. André, “Hydrostatic pressure sensor based on micro-cavities developed by the catastrophic fuse effect,” Proc. SPIE 9634, 96345M (2015).
13. Yu. A. Konin, M. I. Bulatov, V. A. Shcherbakova, A. I. Garanin, Ya. D. Tokareva, and E. V. Mosheva, “Investigation of the properties of an all-fiber temperature sensor created using the melting effect,” Instrum. Exp. Tech. 63, 511–515 (2020).
14. V. A. Shcherbakova, Yu. A. Konin, S. S. Starikov, A. I. Garanin, and I. L. Vol’khin, “Development of a heat-sensitive fiber-optic light scatterer for photodynamic therapy,” in Collected Abstracts and Materials from the 25th All-Russian Scientific Conference of Physics Students and Young Scientists (VNKSF-25), Crimea, 2019, pp. 260–261.
15. M. J. Matthewson, C. R. Kurkjian, and S. T. Gulati, “Strength measurement of optical fibers by bending,” J. Am. Ceram. Soc. 69(11), 815–821 (1986).
16. T. C. Chang, C. M. Hsiao, W. J. Chen, H. P. Hsu, and Y. C. Lin, “The mechanical reliability study of optical fiber (ribbon) by two-point bending method,” J. Telecommun. 26(3), 477–496 (1996).
17. J. L. Armstrong, M. J. Matthewson, and C. R. Kurkjian, “Humidity dependence of the fatigue of high-strength fused silica optical fibers,” J. Am. Ceram. Soc. 83(12), 3100–3108 (2000).
18. P. W. France, M. J. Paradine, M. H. Reeve, and G. R. Newns, “Liquid nitrogen strengths of coated optical glass fibres,” J. Mater. Sci. 15, 825–830 (1980).
19. V. Chean, E. Robin, R. El Abdi, and J.-C. Sangleboeuf, “Study of the mechanical behavior of the optical fiber by a mark-tracking method,” EPJ Web Conf. 6, 34002 (2010).
20. A. V. Mil’kov and M. Ya. Yakovlev, “Optical fiber reliability assessment based on testing for short-term strength and static fatigue,” Sist. Sredstva Svyazi Telev. Radioveshchaniya (1–2), 86–90 (2002).
21. G. Melin, P. Guitton, R. Montron, T. Gotter, T. Robin, B. Overton, A. Morana, S. Rizzolo, and S. Girard, “Radiation resistant single-mode fiber with different coatings for sensing in high dose environments,” IEEE Trans. Nucl. Sci. 66(7), 1657–1662 (2018).