ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2021-88-11-09-15

УДК: 621.383.92

Detection of variable-intensity optical emission using an avalanche photodiode in photon-counting mode

For Russian citation (Opticheskii Zhurnal):

Гулаков И.Р., Зеневич А.О., Кочергина О.В., Новиков Е.В., Гоибов С.А. Регистрация оптического излучения переменной интенсивности лавинным фотодиодом в режиме счета фотонов  // Оптический журнал. 2021. Т. 88. № 11. С. 9–15. http://doi.org/10.17586/1023-5086-2021-88-11-09-15

 

Gulakov I.R., Zenevich A.O., Kochergina O.V., Novikov E.V., Goibov S.A. Detection of variable-intensity optical emission using an avalanche photodiode in photon-counting mode  [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 11. P. 9–15. http://doi.org/10.17586/1023-5086-2021-88-11-09-15

For citation (Journal of Optical Technology):

I. R. Gulakov, A. O. Zenevich, O. V. Kochergina, E. V. Novikov, and S. A. Goibov, "Detection of variable-intensity optical emission using an avalanche photodiode in photon-counting mode," Journal of Optical Technology. 88(11), 620-624 (2021). https://doi.org/10.1364/JOT.88.000620

Abstract:

We demonstrate the possibility of blinding attacks on silicon avalanche photodiodes operating at room temperature and used in quantum cryptographic systems for the detection of single-photon radiation pulses at a wavelength of 850 nm. The parameters of different silicon avalanche photodiodes in the event of their blinding are determined. The possibility of detecting blinding attacks on avalanche photodiodes by controlling the electrical current through the photodiode is established. According to the obtained results, different radiant exposures of multiphoton optical pulses are required to imitate single-photon pulses for different avalanche photodiodes, and the duration of the optical pulses must be shorter than 1 µs. We determine that information on the properties of the avalanche photodetector used in the quantum cryptographic system is required to select the intensity of the optical emission and radiant exposure of multiphoton optical pulses for executing a blinding attack. A schematic of the experimental setup used to investigate blinding attacks and oscillograms of the output signals of avalanche photodiodes under such conditions are presented.

Keywords:

photon counting, blinding attack, avalanche photodiode, quantum cryptography, single-photon radiation pulse

OCIS codes: 270.5568

References:

1. A. V. Sergienko, Quantum Communications and Cryptography (CRC Press, Boca Raton, 2019).
2. F. Xu, X. Ma, Q. Zhang, H. K. Lo, and J. W. Pan, “Secure quantum key distribution with realistic devices,” Rev. Mod. Phys. 92(2), 025002 (2020).
3. W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature 299, 802–803 (1982).
4. D. Dieks, “Communication by EPR devices,” Phys. Lett. A 92(6), 271–272 (1982).
5. D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information (Springer-Verlag, Berlin, 2000).
6. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).
7. J. Preskill, Quantum Information and Quantum Computations (Regulyarnaya i Haoticheskaya Dinamika, Moscow, 2008).
8. V. Makarov and D. R. Hjelme, “Faked states attack on quantum cryptosystems,” J. Mod. Opt. 52(5), 691–705 (2005).
9. V. Makarov, “Controlling passively quenched single photon detectors by bright light,” New J. Phys. 11, 065003 (2009).
10. Z. Yan, D. R. Hamel, A. K. Heinrichs, X. Jiang, M. A. Itzer, and T. Jennewein, “An ultra low noise telecom wavelength free running single photon detector using negative feedback avalanche diode,” Rev. Sci. Instrum. 83(7), 073105 (2012).
11. M. M. Karammaev, S. E. Toporkov, D. A. Korochentsev, I. A. Smirnov, and L. V. Cherckesova, “Vulnerabilities of quantum cryptographysystems implementations,” Nauchn. Obozr. Tekh. Nauki (3), 30–35 (2020).
12. S. N. Molotkov, “On the vulnerability of basic quantum key distribution protocols and three protocols stable to attack with ‘blinding’ of avalanche photodetectors,” J. Exp. Theor. Phys. 114(5), 707–723 (2012) [Zh. Eksp. Teor. Fiz. 141(5), 812–831].
13. E. V. Vasiliu and I. V. Limar’, “Intrusions of quantum systems for key distribution exploiting equipment vulnerability,” in Proceedings of the Third All-Ukrainian Scientific Practical Conference (2017), pp. 9–13.
14. S. Ya. Kilin, D. B. Horoshenko, and A. P. Nizovtsev, Quantum Cryptography: Ideas and Practical Aspects (Belorusskaya Nauka, Minsk, 2007).
15. G. Gras, N. Sultana, A. Huang, T. Jennewein, F. Bussieres, V. Makarov, and H. Zbinden, “Optical control of single-photon negativefeedback avalanche diode detector,” J. Appl. Phys. 127(9), 094502 (2020).
16. L. Lydersen, C. Wiechers, C. Wittman, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4(10), 686–689 (2010).
17. S. Sauge, L. Lydersen, A. Anisimov, J. Skaar, and V. Makarov, “Controlling an actively-quenched single photon detector with bright light,” Opt. Express 19(23), 23590–23600 (2011).
18. E. V. Vasiliu, I. R. Gulakov, and A. O. Zenevich, Quantum Systems for Ensuring Cyber Security (Belorusskaya Akademiya Svyazi, Minsk, 2019).
19. Semiconductors and Semimetals, Volume 22: Lightwave Communications Technology, Part D: Photodetectors, W. T. Tsang, ed. (Academic Press, Cambridge, 1985).
20. I. R. Gulakov and A. O. Zenevich, Photodetectors for Quantum Systems (UO VGKS, Minsk, 2012).
21. N. N. Manova, K. V. Smirnov, Yu. B. Vahtomin, A. V. Divochii, R. V. Ozhegov, and G. N. Gol’tsman, “Detection system for single photons in visible and near-infrared ranges,” in Proceedings of the 21st International Scientific Technical Conference on Photoelectronics and Night Vision Equipment (2010), pp. 135–136.