DOI: 10.17586/1023-5086-2021-88-12-11-16
УДК: 621.373.826
Characterization of lasing regimes of 1.3 µm vertical-cavity surface-emitting lasers based on a short-period InGaAs/InGaAlAs superlattice
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Петренко А.А, Рочас С.С., Карачинский Л.Я., Бабичев А.В., Новиков И.И., Гладышев А.Г., Колодезный Е.С., Копытов П.Е., Бугров В.Е., Блохин С.А., Блохин А.А., Воропаев К.О., Егоров А.Ю. Характеризация режимов лазерной генерации вертикально-излучающих лазеров спектрального диапазона 1,3 мкм на основе короткопериодной сверхрешётки InGaAs/InGaAlAs // Оптический журнал. 2021. Т. 88. № 12. С. 11–16. http://doi.org/10.17586/1023-5086-2021-88-12-11-16
Petrenko A.A., Rochas S.S., Karachinskiy L.Ya., Babichev A.V., Novikov I.I., Gladyshev A.G., Kolodezniy E.S., Kopytov P.E., Bugrov V.E., Blokhin S.A., Blokhin A.A., Voropaev K.O., Egorov A.Yu. Characterization of lasing regimes of 1.3 µm vertical-cavity surface-emitting lasers based on a short-period InGaAs/InGaAlAs superlattice [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 12. P. 11–16. http://doi.org/10.17586/1023-5086-2021-88-12-11-16
A. A. Petrenko, S. S. Rochas, L. Ya. Karachinskii, A. V. Babichev, I. I. Novikov, A. G. Gladyshev, E. S. Kolodeznyi, Kopytov P.E., Bugrov V.E., Blokhin S.A., A. A. Blochin, K. O. Voropaev, and A. Yu. Egorov, "Characterization of lasing regimes of 1.3 µm vertical-cavity surface-emitting lasers based on a short-period InGaAs/InGaAlAs superlattice," Journal of Optical Technology. 88(12), 688-691 (2021). https://doi.org/10.1364/JOT.88.000688
Lasing regimes of 1.3 µm vertical-cavity surface-emitting lasers (VCSELs) based on a short-period In0.57Ga0.43As/In0.53Ga0.27Al0.2As superlattice and two Al0.9Ga0.1As/GaAs distributed Bragg reflectors on a GaAs substrate were characterized in this study. VCSEL crystals were mounted on crystal holders with a radio frequency SMA connector and an optical fiber with ferrule connector (FC) for investigation. Current–voltage and output-power–current characteristics, optical and radio frequency spectra, and polarization stability of laser emission were experimentally investigated in the pump current range of 0–14 mA. The threshold current of the studied VCSELs was established to be 1.7 mA. The maximum output optical power at the output of the optical fiber of the VCSEL based on a short-period In0.57Ga0.43As/In0.53Ga0.27Al0.2As superlattice and the current-induced emission wavelength shift were demonstrated to be 1.34 mW and 0.5 nm/mA, respectively. The small-signal modulation frequency was in the GHz range. The investigated VCSELs can be used in the development of radio photonic devices for telecommunications. Further improvement of the static and dynamic properties of VCSELs is possible by optimizing the design of the short-period superlattice and buried tunnel junction.
vertical-cavity surface-emitting lasers, short-period superlattices, laser dynamic regimes, information-telecommunication systems of data transfer
Acknowledgements:The research was supported by the Ministry of Science and Higher Education of the Russian Federation, project No. 2019-1442.
OCIS codes: 140.5960
References:1. S. A. Blokhin, M. A. Bobrov, N. A. Maleev, A. A. Blokhin, A. G. Kuz’menkov, A. P. Vasil’ev, S. S. Rochas, A. G. Gladyshev, A. V. Babichev, I. I. Novikov, L. Ya. Karachinsky, D. V. Denisov, K. O. Voropaev, A. S. Ionov, A. Yu. Egorov, and V. M. Ustinov, “A vertical-cavity surface-emitting laser for the 1.55-μm spectral range with tunnel junction based on n++ -InGaAs/p++ -InGaAs/p++ -InAlGaAs layers,” Tech. Phys. Lett. 46(9), 854–858 (2020) [Pis’ma Zh. Tekh. Fiz. 46(9), 21–25 (2020)].
2. N. N. Ledentsov, V. A. Shchukin, V. P. Kalosha, N. N. Ledentsov, Jr., J. R. Kropp, M. Agustin, S. A. Blokhin, A. A. Blokhin, M. A. Bobrov, M. M. Kulagina, Yu. M. Zadiranov, and N. A. Maleev, “A design and new functionality of antiwaveguiding vertical-cavity surface-emitting lasers for a wavelength of 850 nm,” Tech. Phys. Lett. 44(1), 36–39 (2018) [Pis’ma Zh. Tekh. Fiz. 44(1), 85–94 (2018)].
3. S. A. Blokhin, M. A. Bobrov, A. A. Blokhin, A. G. Kuzmenkov, N. A. Maleev, V. M. Ustinov, E. S. Kolodeznyi, S. S. Rochas, A. V. Babichev, I. I. Novikov, A. G. Gladyshev, L. Ya. Karachinsky, D. V. Denisov, K. O. Voropaev, A. S. Ionov, and A. Yu. Egorov, “Influence of output optical losses on the dynamic characteristics of 1.55-μm wafer-fused vertical-cavity surface-emitting lasers,” Semiconductors 53(8), 1104–1109 (2019) [Fiz. Tekh. Poluprovodn. 53(8), 1128–1134 (2019)].
4. M. Sciamanna and K. A. Shore, “Physics and applications of laser diode chaos,” Nat. Photonics 9(3), 151–162 (2015).
5. A. Mereuta, A. Sirbu, A. Caliman, G. Suruceanu, V. Iakovlev, Z. Mickovic, and E. Kapon, “Fabrication and performance of 1.3-μm 10-Gb/s CWDM wafer-fused VCSELs grown by MOVPE,” J. Cryst. Growth 414, 210–214 (2015).
6. D. Bimberg, A. Larsson, and A. Joel, “Industry VCSELs,” Comp. Semicond. 1, 22–26 (2014).
7. M.-R. Park, O.-K. Kwon, W.-S. Han, K. H. Lee, S.-J. Park, and B.-S. Yoo, “All-epitaxial InAlGaAs-InP VCSELs in the 1.3-1.6-μm wave-length range for CWDM band applications,” IEEE Photon. Technol. Lett. 18(16), 1717–1719 (2006).
8. D. A. Louderback, M. A. Fish, J. F. Klem, D. K. Serkland, K. D. Choquette, G. W. Pickrell, R. V. Stone, and P. S. Guilfoyle, “Development of bottom-emitting 1300 nm vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 16(4), 963–965 (2004).
9. T. Nishida, M. Takaya, S. Kakinuma, and T. Kaneko, “4.2 mW GaInNAs long-wavelength VCSEL grown by metalorganic chemical vapor deposition,” IEEE J. Sel. Top. Quantum Electron. 11(5), 958–961 (2005).
10. J.-H. Shin, B.-S. Yoo, W.-S. Han, O.-K. Kwon, Y.-G. Ju, and J.-H. Lee, “CW operation and threshold characteristics of all-monolithic InAlGaAs 1.55-μm VCSELs growth by MOCVD,” IEEE Photon. Technol. Lett. 14(8), 1031–1033 (2002).
11. J.-H. Shin, J.-H. Kin, H.-W. Song, I.-Y. Han, Y. G. Ju, W.-S. Han, and O.-K. Kwon, “Near room-temperature continuous-wave operation of all-monolithic InAlGaAs/InP 1.3 μm VCSELs,” Electron. Lett. 39(8), 664–665 (2003).
12. D. Freezell, D. A. Buell, and L. A. Coldren, “InP-based 1.3-1.6 μm VCSELs with selectively etched tunnel-junction apertures on a wavelength flexible platform,” IEEE Photon. Technol. Lett. 17(10), 2017–2019 (2005).
13. M. V. Ramana Murty, X. D. Huang, G. L. Liu, C. C. Lin, D. Xu, C. L. Shieh, H. C. Lee, and J. Cheng, “Long-wavelength VCSEL-based CWDM scheme for 10-GbE links,” IEEE Photon. Technol. Lett. 17(6), 1286–1288 (2005).
14. M. Muller, P. Wolf, C. Grasse, M. P. I. Dias, M. Ortsiefer, G. Bouhm, E. Wong, W. Hofmann, D. Bimberg, and M.-C. Amann, “1.3 μm short-cavity VCSELs enabling error-free transmission at 25 Gbit/s over 25 km fibre link,” Electron. Lett. 48(23), 1487–1489 (2012).
15. D. Ellafi, V. Iakovlev, A. Sirbu, G. Suruceanu, Z. Mickovic, A. Caliman, A. Mereuta, and E. Kapon, “Control of cavity lifetime of 1.5 μm wafer-fused VCSELs by digital mirror trimming,” Opt. Express 22(26), 32180–32187 (2014).
16. A. V. Babichev, L. Ya. Karachinsky, I. I. Novikov, A. G. Gladyshev, S. A. Blokhin, S. Mikhailov, V. Iakovlev, A. Sirbu, G. Stepniak, L. Chorchos, J. P. Turkiewicz, K. O. Voropaev, A. S. Ionov, M. Agustin, N. N. Ledentsov, and A. Yu. Egorov, “6-mW single-mode high-speed 1550-nm wafer-fused VCSELs for DWDM application,” IEEE J. Quantum Electron. 53(6), 1–8 (2017).
17. L. Ya. Karachinsky, I. I. Novikov, A. V. Babichev, A. G. Gladyshev, E. S. Kolodeznyi, S. S. Rochas, A. S. Kurochkin, Yu. K. Bobretsova, A. A. Klimov, D. V. Denisov, K. O. Voropaev, A. S. Ionov, V. E. Bougrov, and A. Yu. Egorov, “Optical gain in laser heterostructures with an active area based on an InGaAs/InGaAlAs superlattice,” Opt. Spectrosc. 127(6), 1053–1056 (2019).
18. S. A. Blokhin, V. N. Nevedomsky, M. A. Bobrov, N. A. Maleev, A. A. Blokhin, A. G. Kuzmenkov, A. P. Vasyl’ev, S. S. Rohas, A. V. Babichev, A. G. Gladyshev, I. I. Novikov, L. Ya. Karachinsky, D. V. Denisov, K. O. Voropaev, A. S. Ionov, A. Yu. Egorov, and V. M. Ustinov, “1.55-μm-range vertical-cavity surface-emitting lasers, manufactured by wafer fusion of heterostructures grown by solid-source molecular-beam epitaxy,” Semiconductors 54(10), 1276–1283 (2020) [Fiz. Tekh. Poluprovodn. 54(10), 1088–1096 (2020)].
19. S. Blokhin, A. Babichev, A. Gladyshev, L. Karachinsky, I. Novikov, A. Blokhin, S. Rochas, D. Denisov, K. Voropaev, A. Ionov, N. Ledentsov, and A. Egorov, “Wafer-fused 1300 nm VCSELs with an active region based on superlattice,” Electron. Lett. 57(18), 697–698 (2021).
20. S. A. Blokhin, A. V. Babichev, A. G. Gladyshev, L. Ya. Karachinsky, I. I. Novikov, A. A. Blokhin, M. A. Bobrov, N. A. Maleev, A. G. Kuzmenkov, A. M. Nadtochii, V. N. Nevedomsky, V. V. Andryushkin, S. S. Rochas, D. V. Denisov, K. O. Voropaev, I. O. Zhumaeva, V. M. Ustinov, A. Yu. Egorov, and V. E. Bugrov, “Investigation of properties of InGaAs/InAlGaAs superlattice for vertical-cavity surface-emitting lasers in the spectral range of 1300 nm,” Zh. Tekh. Fiz. 91(12), 2008–2017 (2021).
21. S. A. Blokhin, N. A. Maleev, M. A. Bobrov, A. G. Kuz’menkov, A. P. Vasil’ev, Yu. M. Zadiranov, M. M. Kulagina, A. A. Blokhin, Yu. A. Guseva, A. M. Ospennikov, M. V. Petrenko, A. G. Gladyshev, A. Yu. Egorov, I. I. Novikov, L. Ya. Karachinsky, D. V. Denisov, and V. M. Ustinov, “Vertical-cavity surface-emitting lasers with intracavity contacts and a rhomboidal current aperture for compact atomic clocks,” Quantum Electron. 49(2), 187–190 (2019).
22. W. Nakwaski, “VCSEL structures used to suppress higher-order transverse modes,” Opto-Electron. Rev. 19(1), 119–129 (2011).
23. M. A. Bobrov, N. A. Maleev, S. A. Blokhin, A. G. Kuzmenkov, A. P. Vasil’ev, A. A. Blokhin, Yu. A. Guseva, M. M. Kulagina, Yu. M. Zadiranov, S. I. Troshkov, V. Lysak, and V. M. Ustinov, “Polarization characteristics of 850-nm vertical-cavity surface-emitting lasers with intracavity contacts and a rhomboidal oxide current aperture,” Semiconductors 50(10), 1365–1390 (2016) [Fiz. Tekh. Poluprovodn. 50(10), 1408–1413 (2016)].
24. P. Wolf, H. Li, A. Caliman, A. Mereuta, V. Iakovlev, A. Sirbu, E. Kapon, and D. Bimberg, “Spectral efficiency and energy efficiency of pulse-amplitude modulation using 1.3 μm wafer-fusion VCSELs for optical interconnects,” ACS Photonics 4(8), 2018–2024 (2017).