DOI: 10.17586/1023-5086-2021-88-12-03-10
УДК: 520.2.064.4, 621.373.826
Design of optical Fabry–Perot filters for spectral combination of laser beams
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Федосеев В.Н., Жупанов В.Г. Проектирование оптических фильтров Фабри–Перо для спектрального сложения лазерных пучков // Оптический журнал. 2021. Т. 88. № 12. С. 3–10. http://doi.org/10.17586/1023-5086-2021-88-12-03-10
Fedoseev V.N., Zhupanov V.G. Design of optical Fabry–Perot filters for spectral combination of laser beams [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 12. P. 3–10. http://doi.org/10.17586/1023-5086-2021-88-12-03-10
V. N. Fedoseev and V. G. Zhupanov, "Design of optical Fabry–Perot filters for spectral combination of laser beams," Journal of Optical Technology. 88(12), 683-687 (2021). https://doi.org/10.1364/JOT.88.000683
Types of spectral combinations of beams of industrial lasers are considered. The optical Fabry–Perot filters are demonstrated to be an acceptable alternative to surface and volume diffraction gratings and edge dichroic filters. Known methods for designing Fabry–Perot filters for spectral multiplexing of channels in fiber-optic telecommunications are updated considering peculiarities of industrial lasers such as different emission power, transmission and suppression bandwidths of filters, and maintenance of minimum power loss. The applicability of the proposed approach is demonstrated using filters for combination of beams of ytterbium fiber lasers as an example.
fiber laser, spectral combination of beams, edge dichroic filter, optical Fabry–Perot filter, spectral multiplexing of channels, energy effectiveness, multilayer dielectric coating
OCIS codes: 140.3298, 130.7408, 050.2230, 310.0310
References:1. R. Diehl, High-Power Diode Lasers: Fundamentals, Technology, Applications (Springer, Berlin, 2000).
2. H. Injeyan and G. D. Goodno, High Power Laser Handbook (McGraw Hill, New York, 2011).
3. G. C. Rodrigues and H. V. Duflou, “Direct diode lasers for industrial laser cutting: a performance comparison with conventional fiber and CO2 technologies,” Phys. Procedia 56, 901–908 (2014).
4. G. C. Rodrigues, M. Cuypers, E. Fallahi Sichani, K. Kellens, and J. R. Duflou, “Laser cutting with direct diode laser,” Phys. Procedia 41, 558–565 (2013).
5. T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron. 11(33), 567–577 (2005).
6. T. Erdogan, “MLD vs. transmission gratings for the highest-efficiency, most-compact pulse compressors,” in OSA High-Brightness Sources and Light-Driven Interactions Congress (Optical Society of America, 2020), paper HM2B.2.
7. C. Palmer, Diffraction Grating Handbook (Newport Corp., Rochester, 2020).
8. V. A. Soifer, Diffraction Computer Optics (Fizmatlit, Moscow, 2007).
9. H. Zhu, X. Lin, Y. Zhang, J. Zhang, B. Wang, J. Zhang, L. Qin, Y. Ning, and H. Wu, “kW-class fiber-coupled diode laser source based on dense spectral multiplexing of an ultra-narrow channel spacing,” Opt. Express 26(19), 24723–24733 (2018).
10. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
11. H. Qi, M. Zhu, M. Fang, S. Shao, C. Wei, K. Yi, and J. Shao, “Development of high-power laser coatings,” High-Power Laser Sci. Eng. 1(1), 36–43 (2013).
12. H. Venghaus, Wavelength Filters in Fibre Optics (Springer, Berlin, 2006).
13. J. Ma, F. Chen, C. Wei, and R. Zhu, “Modeling and analysis of the influence of an edge filter on the combining efficiency and beam quality of a 10-kW-class spectral beam-combining system,” Appl. Sci. 9(10), 2152 (2019).
14. D. Li, Encyclopedia of Microfluids and Nanofluids (Springer, Berlin, 2008).
15. A. V. Tikhonravov and M. K. Trubetskov, “Automated design and sensitivity analysis of wavelength-division multiplexing filters,” Appl. Opt. 41(16), 3176–3182 (2002).
16. C. S. Murthy and M. Gurusamy, WDM Optical Networks: Concepts, Design and Algorithms (Prentice Hall, Hoboken, 2001).
17. S. J. Orfanidis, Electromagnetic Waves and Antennas (Rutgers University, New Brunswick, 2016).