ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2021-88-12-42-49

УДК: 535-15, 612.08, 615.47, 616.1, 616-71, 617-7

Optical and electrophysiological techniques for functional assessment of vision system neuronal networks

For Russian citation (Opticheskii Zhurnal):

Муравьева С.В., Козуб К.Е., Пронин С.В. Оптические и электрофизиологические методы оценки функционального состояния нейронных сетей зрительной системы // Оптический журнал. 2021. Т. 88. № 12. С. 42–49. http://doi.org/10.17586/1023-5086-2021-88-12-42-49

 

Muravieva S.V., Kozub K.E., Pronin S.V. Optical and electrophysiological techniques for functional assessment of vision system neuronal networks [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 12. P. 42–49. http://doi.org/10.17586/1023-5086-2021-88-12-42-49

For citation (Journal of Optical Technology):

S. V. Muravieva, K. E. Kozub, and S. V. Pronin, "Optical and electrophysiological techniques for functional assessment of vision system neuronal networks," Journal of Optical Technology. 88(12), 710-715 (2021). https://doi.org/10.1364/JOT.88.000710

Abstract:

We studied the two major channels of the vision system, which differ not only in their spatial-frequency characteristics but also in the sizes of the cellular structures that support the corresponding neuronal networks. We used a combination of optical and electrophysiological techniques to measure the properties of these channels in normal test subjects and in patients with various types of cognitive impairment. For electrophysiological measurements, a digital filter was used to generate stimuli with spatial-frequency responses for selective activation of each channel. Optical coherence tomography (OCT) and electrophysiological measurements in test subjects with various types of cognitive impairment were used to determine the relationship between morphological and functional changes in the vision system channel, which is primarily formed by the small-cell neuronal network and supports processing of high spatial frequencies.

Keywords:

eyesight, optical coherence tomography, evoked potentials, retina, cognitive impairments, spatial-frequency filtering

Acknowledgements:

This work was performed with support from Government Program 47 under the Government Program for Scientific and Technical Development of the Russian Federation (2019–2030), Topic 0134-2019-0006 (Section 63.3).

OCIS codes: 330.033, 330.6110, 330.7329, 330.5380

References:

1. Yu. E. Shelepin, A. K. Kharauzov, O. V. Zhukova, S. V. Pronin, M. S. Kupriyanov, and O. V. Tsvetkov, “Masking and detection of hidden signals in dynamic images,” J. Opt. Technol. 87(10), 624–632 (2020) [Opt. Zh. 87(10), 89–102 (2020)].
2. S. V. Muraveva, M. V. Pronina, G. A. Moiseenko, A. N. Pnevskaya, Yu. I. Polyakov, Yu. D. Kropotov, S. V. Pronin, E. Yu. Shelepin, and Yu. E. Shelepin, “Analysis of visual cognitive impairments in schizophrenia at the early stages of the disease and their correction by interactive virtual environment,” Hum. Physiol. 43(6), 625–636 (2017) [Fiziol. Chel. 43(6), 24–36 (2017)].
3. S. V. Murav’eva, G. A. Moiseenko, A. N. Chomsky, E. A. Sharibin, Yu. D. Kropotov, and Yu. E. Shelepin, “Stimulation of the visual system using a cognitive task in a virtual environment in patients with schizophrenia and depression,” Hum. Physiol. 46(5), 483–491 (2020) [Fiziol. Chel. 46(5), 27–36 (2020)].
4. S. V. Murav’eva, S. V. Pronin, and A. N. Chomski˘ı, “Using virtual reality systems to stimulate the visual system of patients with depression,” J. Opt. Technol. 86(11), 734–738 (2019) [Opt. Zh. 86(11), 72–78 (2019)].
5. Yu. E. Shelepin, Introduction to Neuroiconics (Izd-vo Troitski˘ı most, St. Petersburg, 2017).
6. V. A. Serebryakov, E. V. Bo˘ıko, M. V. Gatsu, A. S. Izma˘ılov, N. A. Kalintseva, M. V. Melikhova, and G. V. Papayan, “Optical coherence tomography angiography in the diagnosis of ophthalmologic diseases: problems and prospects (Review),” J. Opt. Technol. 87(2), 67–93 (2020) [Opt. Zh. 87(2), 67–93(2020)].
7. Yu. S. Astakhov and S. G. Belekhova, “Optical coherence tomography: how it all began and current diagnostic capabilities of the technique,” Oftal’mol. Vedomosti 7(2), 60–68 (2014).
8. V. V. Tuchin, Handbook of Optical Biomedical Diagnostics: Vol. 2, Methods (SPIE Press, Bellingham, Washington, 2016).
9. L. Ferrari, G. Magnani, G. Comi, L. Leocani, S.-C. Huang, A. Ambrosi, and S.-C. Huang, “Optical coherence tomography reveals retinal neuroaxonal thinning in frontotemporal dementia as in Alzheimer’s disease,” J. Alzheimer’s Dis. 56, 1101–1107 (2017).
10. B. C. Akopyan, A. Kh. Boiko, M. B. Davydovskaya, N. S. Semenova, I. V. Filonenko, A. V. Fomin, and M. A. Tsysar, “Neural architecture of retina in disseminated sclerosis: diagnostic capabilities of optical coherence tomography (preliminary results),” Oftal’mologiya 8(1), 32–36 (2011).
11. Y.-T. Ong, S. Hilal, C. Y. Cheung, N. Venketasubramanian, W. J. Niessen, H. Vrooman, A. R. Anuar, M. Chew, C. Chen, T. Y. Wong, and M. K. Ikram, “Retinal neurodegeneration on optical coherence tomography and cerebral atrophy,” Neurosci. Lett. 584, 12–16 (2015).
12. J. Y. Lee, J. Ahn, T. W. Kim, and B. S. Jeon, “Optical coherence tomography in Parkinson’s disease: is the retina a biomarker,” J. Parkinson’s Dis. 4(2), 197–204 (2014).
13. K. E. Kozub, Yu. E. Shelepin, A. Kh. Chomskii, E. A. Sharybin, and E. A. Ivanova, “A structural and functional study of the retina in patients with schizophrenia,” Oftal’mol. Zh. (4), 38–43 (2020).
14. G. A. Moiseenko, Yu. E. Shelepin, A. K. Kharauzov, S. V. Pronin, V. N. Chikhman, and O. A. Vakhrameeva, “Classification and recognition of images of animate and inanimate objects,” J. Opt. Technol. 82(10), 685–693 (2015) [Opt. Zh. 82(10), 53–64 (2015)].

15. F. J. Ascaso, R. Rodriguez-Jimenez, L. Cabezón, R. López-Antón, J. Santabárbara, C. De la Cámara, P. J. Modrego, M. A. Quintanilla, A. Bagney, L. Gutierrez, N. Cruz, J. A. Cristóbal, and A. Lobo, “Retinal nerve fiber layer and macular thickness in patients with schizophrenia: influence of recent illness episodes,” Psychiatry Res. 229, 230–236 (2015).
16. A. V. Sakharov, A. S. Ozornin, S. E. Golygina, A. O. Vinogradova, and M. S. Shvets, “Microcirculation in patients with paranoid schizophrenia,” Zh. Nevrol. Psikhiatr. im. S. S. Korsakova 118, 74–76 (2018).
17. J.-J. Kim and S.-H. Park, “Visual perception deficits associated with the magnocellular pathway in schizophrenia,” Korean J. Schizophr. Res. 14, 61–75 (2011).
18. E. C. Lalor, P. De Sanctis, M. I. Krakowski, and J. J. Foxe, “Visual sensory processing deficits in schizophrenia: is there anything to the magnocellular account?” Schizophr. Res. 139, 246–252 (2012).
19. A. Martínez, S. A. Hillyard, S. Bickel, E. C. Dias, P. D. Butler, and D. C. Javitt, “Consequences of magnocellular dysfunction on processing attended information in schizophrenia,” Cereb. Cortex 22, 1282–1293 (2012).
20. B. C. Skottun and J. R. Skoyles, “Visually evoked potentials, NMDA receptors and the magnocellular system in schizophrenia,” Acta Neuropsychiatrica 24, 50–55 (2012).
21. G. M. Doniger, J. J. Foxe, M. M. Murray, B. A. Higgins, and D. C. Javitt, “Impaired visual object recognition and dorsal/ventral stream interaction in schizophrenia,” Arch. Gen. Psychiatry 59, 1011–1020 (2002).
22. B. A. Ardekani, J. Nierenberg, M. J. Hoptman, D. C. Javitt, and K. O. Lim, “MRI study of white matter diffusion anisotropy in schizophrenia,” NeuroReport 14, 2025–2029 (2003).
23. N. Oribe, Y. Hirano, S. Kanba, E. C. del Re, L. J. Seidman, R. Mesholam-Gately, K. M. Spencer, R. W. McCarley, and M. A. Niznikiewicz, “Early and late stages of visual processing in individuals in prodromal state and first episode schizophrenia: an ERP study,” Schizophr. Res. 146, 95–102 (2013).
24. G. Plomp, M. Roinishvili, E. Chkonia, G. Kapanadze, M. Kereselidze, A. Brand, and M. H. Herzog, “Electrophysiological evidence for ventral stream deficits in schizophrenia patients,” Schizophr. Bull. 39, 547–554 (2013).