DOI: 10.17586/1023-5086-2021-88-12-87-92
УДК: 621.315.592
Investigation of the zinc diffusion process into epitaxial layers of indium phosphide and indium-gallium arsenide grown by molecular beam epitaxy
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Андрюшкин В.В., Гладышев А.Г., Бабичев А.В., Колодезный Е.С., Новиков И.И., Карачинский Л.Я., Рочас С.С., Малеев Н.А., Хвостиков В.П., Бер Б.Я., Кузьменков А.Г., Кижаев С.С., Бугров В.Е. Исследование процесса диффузии цинка в эпитаксиальные слои фосфида индия и индия галлия арсенида, выращенные методом молекулярно-пучковой эпитаксии // Оптический журнал. 2021. Т. 88. № 12. С. 87–92. http://doi.org/10.17586/1023-5086-2021-88-12-87-92
Andryushkin V.V., Gladyshev A.G., Babichev A.V., Kolodezniy E.S., Novikov I.I., Karachinskiy L.Ya., Rochas S.S., Maleev N.A., Khvostikov V.P., Ber B.Ya., Kuzmenkov A.G., Kizhaev S.S., Bougrov V.E. Investigation of the zinc diffusion process into epitaxial layers of indium phosphide and indium-gallium arsenide grown by molecular beam epitaxy [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 12. P. 87–92. http://doi.org/10.17586/1023-5086-2021-88-12-87-92
V. V. Andryushkin, A. G. Gladyshev, A. V. Babichev, E. S. Kolodeznyi, I. I. Novikov, L. Ya. Karachinsky, S. S. Rochas, N. A. Maleev, V. P. Khvostikov, B. Ya. Ber, A. G. Kuzmenkov, S. S. Kizhaev, and V. E. Bougrov, "Investigation of the zinc diffusion process into epitaxial layers of indium phosphide and indium-gallium arsenide grown by molecular beam epitaxy," Journal of Optical Technology. 88(12), 742-745 (2021). https://doi.org/10.1364/JOT.88.000742
The results of an investigation of the peculiarities of the zinc diffusion process into epitaxial layers of indium phosphide and indium-gallium arsenide aimed at the fabrication of an avalanche photodiode for a single-photon detector are presented. The diffusion of zinc into indium phosphide through an intermediate layer of indium-gallium arsenide ensures better surface quality compared with the direct diffusion of zinc into the indium phosphide layer. We discovered that systems such as a quartz reactor with resistive heating with an internal solid-state source of zinc vapor and the reactor of a metal-organic chemical vapor deposition setup with hydrogen as a carrier gas make it possible to achieve similar concentrations of doping p-type impurity, which exceed 2×1018cm−3. The depth of zinc diffusion in the indium phosphide layer ranged from 2 to 3.5 µm, depending on the temperature and duration of the diffusion process. Such depths are required for fabrication of effective avalanche photodiodes.
molecular beam epitaxy, heterostructure, diffusion, avalanche photodiode
Acknowledgements:The research was supported by the Ministry of Science and Higher Education of the Russian Federation, project No. 2019-1442.
OCIS codes: 290.1990, 040.1345
References:1. J. Zhang, M. A. Itzler, H. Zbinden, and J. W. Pan, “Advances in InGaAs/InP single-photon detector systems for quantum communication,” Light: Sci. Appl. 4(5), e286 (2015).
2. F. Acerbi, M. Anti, A. Tosi, and F. Zappa, “Design criteria for InGaAs/InP single-photon avalanche diode,” IEEE Photon. J. 5(2), 6800209 (2013).
3. A. Tosi, N. Calandri, M. Sanzaro, and F. Acerbi, “Low-noise, low-jitter, high detection efficiency InGaAs/InP single-photon avalanche diode,” IEEE J. Sel. Top. Quantum Electron. 20(6), 192197 (2014).
4. X. Jiang, M. A. Itzler, R. Ben-Michael, and K. Slomkowski, “InGaAsP–InP avalanche photodiodes for single photon detection,” IEEE J. Sel. Top. Quantum Electron. 13(4), 895–905 (2007).
5. N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1(3), 165–171 (2007).
6. M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100(26), 261104 (2012).
7. C. Yu, M. Shangguan, H. Xia, J. Zhang, X. Dou, and J.-W. Pan, “Fully integrated free-running InGaAs/InP single-photon detector for accurate lidar applications,” Opt. Express 25(13), 14611–14620 (2017).
8. F. Stellari, P. Song, and A. J. Weger, “Single photon detectors for ultra low voltage time-resolved emission measurements,” IEEE J. Quantum Electron. 47(6), 841–848 (2011).
9. S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35(12), 1956–1976 (1996).
10. F. Signorelli, F. Telesca, E. Conca, A. Della Frera, A. Ruggeri, A. Giudice, and A. Tosi, “Low-noise InGaAs/InP single-photon avalanche diodes for fiber-based and free-space applications,” IEEE J. Sel. Top. Quantum Electron. 28(2), 3801310 (2021).
11. K. Vanhollebeke, M. D’Hondt, I. Moerman, P. Van Daele, and P. Demeester, “Zn doping of InP, InAsP/InP, and InAsP/InGaAs heterostructures through metalorganic vapor phase diffusion (MOVPD),” J. Electron. Mater. 30(8), 951–959 (2001).
12. J. Wisser, M. Glade, H. J. Schmidt, and K. Heime, “Zinc diffusion in InP using diethylzinc and phosphine,” J. Appl. Phys. 71(7), 3234–3237 (1992).
13. D. D’Agostino, G. Carnicella, C. Ciminelli, P. Thijs, P. J. Veldhoven, H. Ambrosius, and M. Smit, “Low-loss passive waveguides in a generic InP foundry process via local diffusion of zinc,” Opt. Express 23(19), 25143–25157 (2015).
14. C. Park, S. B. Cho, C. Y. Park, S. Baek, and S.-K. Han, “Dual anode single-photon avalanche diode for high-speed and low-noise Geiger-mode operation,” Opt. Express 27(13), 18201–18209 (2019).