DOI: 10.17586/1023-5086-2021-88-02-40-49
УДК: 004.93
Wavelet transform of a gray-scale image in a finite GF(2) field
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Горбачев В.Н., Казаков А.Я., Савельева М.Ю. Вейвлет-преобразование полутонового изображения в конечном поле GF(2) // Оптический журнал. 2021. Т. 88. № 2. С. 40–49. http://doi.org/10.17586/1023-5086-2021-88-02-40-49
Gorbachev V.N., Kazakov A.Ya., Savelieva M.Yu. Wavelet transform of a gray-scale image in a finite GF(2) field [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 2. P. 40–49. http://doi.org/10.17586/1023-5086-2021-88-02-40-49
V. N. Gorbachev, A. Ya. Kazakov, and M. Yu. Savel’eva, "Wavelet transform of a gray-scale image in a finite GF(2) field," Journal of Optical Technology. 88(2), 87-93 (2021). https://doi.org/10.1364/JOT.88.000087
A biorthogonal wavelet transform in a finite GF(2) field is studied for gray-scale images. The wavelet transform is implemented on the basis of binary filters of length 4 and 8, with the initial image resolved into bit planes. As an example, an arrangement of embedded digital watermarks into blocks of wavelet coefficients is considered. It is shown that the proposed technique makes it possible to eliminate the averaging errors that accompany the standard approach.
discrete wavelet transform, finite field, digital image
OCIS codes: 100.2000, 100.7410
References:1. O. Moreno, A. Tirkel, R. Van Schyndel, and U. Parampalli, “New families of 2D & 3D arrays for sub-image watermarking,” in Proceedings of the Fourth International Conference on Network and System Security, 2010.
2. D. V. Chernikov, “Noiseproof encoding using biorthogonal sets of filters,” Sib. Elektron. Mat. Izv. 12, 704–713 (2015).
3. W. Abdul, P. Carre, and P. Gaborit, “Error-correcting codes for robust color wavelet watermarking,” EURASIP J. Inf. Secur. 2013(1), 1 (2013).
4. V. N. Gorbachev, L. A. Denisov, E. M. Kaynarova, and I. K. Metelev, “A steganographic image-based approach for protection of pdf files,” in Multi Conference on Computer Science and Information Systems (MCCSIS), Lisbon, Portugal, 20–23 July 2017, pp. 285–289.
5. A. P. Bahrushin, G. I. Bahrushina, and R. I. Bazhenov, “A reversible image watermarking scheme based on a new modulation mode of DCT coefficients,” J. Phys. Conf. Ser. 1399(3), 033025 (2019).
6. S. Shantam, “Robust lossless image watermarking in integer wavelet domain using SVD,” Int. J. Res. Appl. Sci. Eng. Technol. (IJRASET) 5(6), 2462–2467 (2017).
7. A. G. Shoberg and K. A. Shoberg, “Influence of execution of orthogonal block transform types and results of comparison,” J. Phys. Conf. Ser. 1015(3), 032130 (2018).
8. A. G. Shoberg, S. V. Sai, and K. A. Shoberg, “The transform performing algorithm for frequency domain search,” J. Phys. Conf. Ser. 803(1), 012147 (2017).
9. V. N. Gorbachev, A. Ya. Kazakov, E. M. Kanarova, and K. D. Maslenitskaya, “Wavelet transform of a halftone image in a finite field,” J. Opt. Technol. 87(5), 293–298 (2020) [Opt. Zh. 87(5), 54–62 (2020)].
10. M. D. Swanson and A. H. Tewfik, “A binary wavelet decomposition of binary images,” IEEE Trans. Image Process. 5(12), 1637–1650 (1996). 11. R. Lidl and H. Niederreiter, Finite Fields (Cambridge Univ. Press, Cambridge, 2008; Mir, Moscow, 1988).
12. V. N. Gorbachev, M. Yu. Saveljeva, A. A. Makarov, and E. S. Yakovleva, “On duplicating of the elements representing the image,” in Wave Electronics and its Application in Information and Telecommunication Systems (WECONF), St. Petersburg, Russia, 1–5 June 2020.