DOI: 10.17586/1023-5086-2021-88-02-66-72
УДК: 681.7.055.3
Analysis of surfaces of plates made of optical glass–ceramics using phase-shifting interferometry in the ultraviolet spectral range
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Голяева А.Ю., Лобанов П.Ю., Мануйлович И.С., Сидорюк О.Е. Анализ поверхности пластин из оптической стеклокерамики посредством интерферометрии управляемого фазового сдвига в ультрафиолетовом диапазоне // Оптический журнал. 2021. Т. 88. № 2. С. 66–72. http://doi.org/10.17586/1023-5086-2021-88-02-66-72
Golyaeva A.Yu., Lobanov P.Yu., Manuylovich I.S., Sidoryuk O.E. Analysis of surfaces of plates made of optical glass–ceramics using phase-shifting interferometry in the ultraviolet spectral range [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 2. P. 66–72. http://doi.org/10.17586/1023-5086-2021-88-02-66-72
A. Yu. Golyaeva, P. Yu. Lobanov, I. S. Manuylovich, and O. E. Sidoryuk, "Analysis of surfaces of plates made of optical glass–ceramics using phase-shifting interferometry in the ultraviolet spectral range," Journal of Optical Technology. 88(2), 106-110 (2021). https://doi.org/10.1364/JOT.88.000106
This study considers the specific aspects of controlling the surfaces of optical glass-ceramic-based components of assemblies with solder connections. The relief analysis is based on phase-shifting interferometry with selection of the operation laser wavelength corresponding to the intrinsic absorption band of the studied samples to eliminate the negative effect of interplane interference and local metallization. We demonstrate the possibility of successful application of the proposed approach to both quality control of mass-produced elements of laser gyroscope sensors and research on optimal technological solutions for assembling the constructions consisting of Astrositall or its analogs.
optical surface, profilometer, laser interferometry, ultraviolet radiation, glass-ceramics, sitall, Zerodur
OCIS codes: 120.0120, 120.3180
References:1. K. Green, J. Burke, and B. Oreb, “Chemical bonding for precision optical assemblies,” Opt. Eng. 50(2), 023401 (2011).
2. G. Kalkowski, S. Risse, C. Rothhardt, M. Rohde, and R. Eberhardt, “Optical contacting of low-expansion materials,” Proc. SPIE 8126, 81261F (2011).
3. N. V. Tikhmenev, S. A. Zakurnaev, A. V. Ozarenko, V. S. Bystritskiy, S. A. Myagkov, R. A. Stolyarov, K. E. Chechetov, and S. E. Korshunov, “Influence of surface treatment and purification methods of SO-115M glass-ceramics on optical contact strength,” Nauchno-Tekh. Vestn. Inf. Tekhnol. Mekh. Opt. 16(4), 613–619 (2016).
4. V. V. Azarova, Yu. D. Golyaev, and I. I. Savelyev, “Zeeman laser gyroscopes,” Quantum Electron. 45(2), 171–179 (2015).
5. Y. Surrel, “Design of algorithms for phase measurements by the use of phase stepping,” Appl. Opt. 35(1), 51–60 (1996).
6. Y. Surrel, “Phase-shifting algorithms for nonlinear, spatially nonuniform phase shifts: comment,” J. Opt. Soc. Am. A 15(5), 1227–1233 (1998). 7. J. J. Gierloff, “Phase unwrapping by regions,” Proc. SPIE 818, 2–9 (1987).
8. M. A. Herráez, D. R. Burton, M. J. Lalor, and M. A. Gdeisat, “Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path,” Appl. Opt. 41(35), 7437–7444 (2002).
9. H. Tang and C. Basaran, “A damage mechanics-based fatigue life prediction model for solder joints,” Trans. ASME 125(3), 120–125 (2003).