DOI: 10.17586/1023-5086-2021-88-02-73-78
УДК: 537.86:621.37
Calculation of the splice loss of two fibers, one of which is elliptically deformed along its entire length
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Гладких В.А., Власенко В.Д. Расчёт потерь при сращивании двух волокон, одно из которых эллиптически деформировано в поперечнике по всей длине // Оптический журнал. 2021. Т. 88. № 2. С. 73–78. http://doi.org/10.17586/1023-5086-2021-88-02-73-78
Gladkikh V.A., Vlasenko V.D. Calculation of the splice loss of two fibers, one of which is elliptically deformed along its entire length [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 2. P. 73–78. http://doi.org/10.17586/1023-5086-2021-88-02-73-78
V. A. Gladkikh and V. D. Vlasenko, "Calculation of the splice loss of two fibers, one of which is elliptically deformed along its entire length," Journal of Optical Technology. 88(2), 111-115 (2021). https://doi.org/10.1364/JOT.88.000111
Two optical fibers are considered—round and elliptically deformed (along the entire length) in its cross section. For single-mode operation, analytical expressions are obtained for the energy loss when splicing two such fibers, depending on the eccentricity. It is shown that, provided that the propagation constants in the first and second fibers coincide during their splicing, the energy losses depend not only on the eccentricity of the deformed fiber, but also on the waveguide number.
fiber-optic guide, single-mode operation, elliptical deformation
OCIS codes: 060.2310
References:1. J. Midwinter, Fiber Optics for Transmitting Information (Radio i Svyaz’, Moscow, 1983).
2. T. Okosi, K. Okamoto, M. Otsu, H. Nisikhara, K. Kyuma, and K. Khataté, Fiber Optic Sensors (Leningrad, Energatomizdat, 1990).
3. P. K. Cheo, Fiber Optics: Devices and Systems (Moscow, Energatomizdat, 1988).
4. N. A. Semenov, Optical Communication Cables: Theory and Calculations (Radio i Svyaz’, Moscow, 1981).
5. R. R. Ubaidullaev, Fiber-Optic Networks (Center for Engineering and Technology “Eco-Trends,” Moscow, 2000).
6. D. Markuze, Optical Waveguides (Moscow, Mir, 1974).
7. A. L. Dmitriev, Optical Systems for Information Transmission (ITMO University, St. Petersburg, 2007).
8. K. G. Ungern, Planar and Fiber Optic Waveguides (Moscow, Mir, 1980).
9. V. G. Voronin, O. E. Naniî, A. N. Turkin, D. D. Shcherbatkin, V. I. Khlystov, and V. A. Kamynin, Integral Losses in the Elements of Fiber-Optic Communication Lines (Maks Press, Moscow, 2012).
10. A. V. Burdin, A. E. Zhukov, and D. E. Praporshchikov, “Calculation of insertion loss at the junction of weakly guiding optical fibers with an arbitrary refractive index profile in a low-mode transmission of optical signals,” T-comm – Telekommun. Transp. 9(4), 60–66 (2015).
11. M. Adams, Introduction to the Theory of Optical Waveguides (Moscow, Mir, 1984).
12. A. Snyder and J. Love, Optical Waveguide Theory (Radio i Svyaz’, Moscow, 1987).
13. M. A. R. Franco, L. C. Vasconcellos, and J. M. Machado, “Coupling efficiency between optical fiber and Ti:LiNbO3 channel waveguide,” Rev. Cient. Period. Telecomun. 7, 54–59 (2004).
14. N. V. Burov, J. Lin, and V. B. Romashova, “High power fiber combiners,” Fotonika 12(1), 16–28 (2018).
15. L. V. Grigor’ev, Silicon Photonics (St. Petersburg, ITMO University, 2015).
16. V. N. Listvin and V. N. Treshchikov, “DWDM—systems,” Foton Ekspress 7, 30–32 (2012).
17. V. A. Gladkikh, “Calculation of the power of the electric field penetrating into the outer cladding of a weakly guiding single-mode fiber,” Comput. Opt. 43(4), 557–561 (2019).