DOI: 10.17586/1023-5086-2021-88-03-03-09
УДК: 535
Absorption characteristics of one-dimensional graphene photonic crystals
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Mengtao Liu, Qingchun Zhou Absorption characteristics of one-dimensional graphene photonic crystals (Характеристики поглощения в одномерном фотонном кристалле на основе графена) [на англ. яз.] // Оптический журнал. 2021. Т. 88. № 3. С. 3–9. http://doi.org/10.17586/1023-5086-2021-88-03-03-09
Mengtao Liu, Qingchun Zhou Absorption characteristics of one-dimensional graphene photonic crystals (Характеристики поглощения в одномерном фотонном кристалле на основе графена) [in English] // Opticheskii Zhurnal. 2021. V. 88. № 3. P. 3–9. http://doi.org/10.17586/1023-5086-2021-88-03-03-09
M. Liu and Q. Zhou, "Absorption characteristics of one-dimensional graphene photonic crystals," Journal of Optical Technology. 88(3), 116-120 (2021). https://doi.org/10.1364/JOT.88.000116
In order to study the absorption characteristics of one-dimensional graphene photonic crystal, the TE wave of 300–1000 nm was analyzed theoretically and numerically based on the transfer matrix method. The effects of incident angle, the structure of the photonic crystal, the number of graphene layers and the refractive index of the defect layer on the absorption characteristics are analyzed. The results show that the absorption of graphene can be greatly improved by using the micro Fabry–Pеrot cavity formed by the defect layer of the photonic crystal. The peak, the position and the bandwidth of the absorbance can be adjusted by changing the above-mentioned parameters of the photonic crystal. This study provides a way to expand the application of photonic crystals.
photonic crystal, graphene, transfer matrix, absorptivity
OCIS codes: 140.3300, 220.3620, 260.5430
References:1. Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics // Phys. Rev. Lett. 1987. V. 58. № 20. P. 2059–2062.
2. John S. Strong localization of photons in certain disordered dielectric super lattices // Phys. Rev. Lett. 1987. V. 58. № 23. P. 2486–2489.
3. Jeon H.S., Park. Y.S. A dielectric omnidirectional near-infrared reflector // J. Opt. Soc. Korea. 2002. V. 6. № 3. P. 72–75.
4. Zhao X.K., Zhao Q., Wang. L. Laser and infrared compatible stealth from near to far infrared bands by doped photonic crystal // Proc. Eng. 2011. V. 15. P. 1668–1672.
5. Liu K.X., Shen. L. Interaction between two one-way waveguides // IEEE. J. Quantum. Electron. 2012. V. 48. № 8. P. 1059–1064.
6. Novoselov K.S., Geim A.K., et al. Electric field effect in atomically thin carbon films // Science. 2004. V. 306. № 5969. P. 666–669.
7. Nair R.R., Blake P., Grigorenko A.N., et al. Fine structure constant defines visual transparency of graphene // Science. 2008. V. 320. № 5881. P. 1308–1308.
8. Berman O.L., Boyko V.S., Kezerashvili R.Y., et al. Graphene-based photonic crystal // Phys. Lett. A. 2010. V. 374. № 47. P. 4784–4784.
9. Guo X., Wu X., Cui H., Yang F., Zhou J. Slow light performance enhancement of graphene-based photonic crystal waveguide // Phys. Lett. A. 2019. V. 383. № 16. P. 1983–1987.
10. Berman O.L., Boyko V.S., Kezerashvili R.Y., Kolesnikov A.A., Lozovik Y.E. On transmittance and localization of the electromagnetic wave in two-dimensional graphene-based photonic crystals // Phys. Lett. A. V. 382. № 31. P. 2075–2080.
11. Kang Y.Q., Liu H.M. Wideband absorption in one dimensional photonic crystal with graphene-based hyperbolic metamaterials // Superlattices Microstruct. 2018. V. 114. P. 355–360.
12. Fang H.M., Cao J.H., Liu J.Z., et al. Photonic bandgap properties of one-dimensional graphene-based photonic crystals with a single dielectric // IOP Conf. Series: Materials Sci. and Eng. 2017. V. 230. № 01. P. 2019–2025.
13. Arezou R., Abdolrahman N., Reza A.G. Magnetically tunable enhanced absorption of circularly polarized light in graphene-based 1D photonic crystals // Appl. Opt. 2017. V. 56. № 21. P. 5914–5920.
14. Ning R.X., Liu S.B., et al. Electromagnetic absorption characteristics of 1-D graphene photonic crystals // Laser Technol. 2015. V. 39. № 01. P. 28–32.
15. Wu J.J., Gao J.X. Absorption characteristics of metal-graphene photonic crystal-metal structures // Laser Technol. 2019. V. 43. № 05. P. 24–28.
16. Pottier P., Shi L., Peter Y.A. Evolution of modes of Fabry–Perot cavity based on photonic crystal guidedmode resonance mirrors // JOSA. B. 2012. V. 29. № 20. P. 2698–2703.
17. Bruna M., Borini S. Optical constants of graphene layers in the visible range // Appl. Phys. Lett. 2009. V. 94. № 03. P. 031901.
18. Kuang C.F., Zhang. Z.F. Transfer matrix method for analyzing properties of light propagation in 1-Dimension photonic crystars // Laser J. 2003. № 04. P. 38–39.
19. Mahmoodzadeh H., Rezaei B. Tunable Bragg defect mode in one-dimensional photonic crystal containing a graphene-embedded defect layer // Appl. Opt. 2018. V. 57. № 09. P. 2172–2176.
20. Wu J.J., Gao J.X. Wideband absorption in one dimensional bilayer-graphene embedded photonic multilayer structure// Superlattices Microstruct. 2020. V. 140. P. 106437.