DOI: 10.17586/1023-5086-2021-88-03-61-71
УДК: 535.42, 535.343
Structured media based on magnetic colloids as a promising material for magnetically controllable optical elements
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Закинян А.А., Белых С.С., Закинян А.Р., Ерин К.В. Структурированные среды на основе магнитных коллоидов как перспективный материал для магнитоуправляемых оптических элементов // Оптический журнал. 2021. Т. 88. № 3. С. 61–71. http://doi.org/10.17586/1023-5086-2021-88-03-61-71
Zakinyan A.A., Belykh S.S., Zakinyan A.R., Yerin K.V. Structured media based on magnetic colloids as a promising material for magnetically controllable optical elements [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 3. P. 61–71. http://doi.org/10.17586/1023-5086-2021-88-03-61-71
A. A. Zakinyan, S. S. Belykh, A. R. Zakinyan, and K. V. Yerin, "Structured media based on magnetic colloids as a promising material for magnetically controllable optical elements," Journal of Optical Technology. 88(3), 158-165 (2021). https://doi.org/10.1364/JOT.88.000158
The magneto-optic effects in magnetic emulsions with low interfacial tension based on aviation hydraulic oil and in magnetic colloids with an extensive system of nanoparticle aggregates is investigated. The effect of changing the transparency in a longitudinal magnetic field is detected, the magnitude of which can be controlled by changing the strength and orientation of the magnetic field. In a transverse field, the effect of anisotropic diffractive scattering of light by irregular and regular systems of microdroplets elongated along the field is demonstrated. Diffraction patterns are obtained that can be configured by adjusting the ratio of components of a rotating magnetic field. It is concluded that magnetic emulsions and magnetic colloids with concentrated nanoparticle aggregates are promising as materials for magnetically controllable optical elements.
magnetic emulsions, aggregates, magnetooptical effects, light diffraction, controlled light transmission, microdroplets distortion, aligned structures
Acknowledgements:The research was supported by the State Contract of the Ministry of Education and Science of the Russian Federation for Scientific Research (0795-2020-007).
OCIS codes: 160.3820; 230.3810; 230.1950; 290.2200
References:1. M. Zahn, “Magnetic fluid and nanoparticle applications to nanotechnology,” J. Nanopart. Res. 3, 73–78 (2001).
2. S. Odenbach, “Magnetic fluids,” Adv. Colloid Interface Sci. 46, 263–283 (1993).
3. J. Philip and J. M. Laskar, “Optical properties and applications of ferrofluids—a review,” J. Nanofluids 1, 3–20 (2012).
4. D. V. Orlov, Yu. O. Mikhalev, and N. K. Myshkin, Magnetic Fluids in Machine Construction (Mashinostroenie, Moscow, 1993).
5. N. Saga and T. Nakamura, “Elucidation of propulsive force of microrobot using magnetic fluid,” J. Appl. Phys. 91, 7003 (2002).
6. V. Mahendran and J. Philip, “Nanofluid-based optical sensor for rapid visual inspection of defects in ferromagnetic materials,” Appl. Phys. Lett. 100, 073104 (2012).
7. J. Hesselbach and C. Abel-Keilhack, “Active hydrostatic bearing with magnetorheological fluid,” J. Appl. Phys. 93, 8441 (2003).
8. S. Pu, X. Chen, L. Chen, W. Liao, Y. Chen, and Y. Xia, “Tunable magnetic fluid grating by applying a magnetic field,” Appl. Phys. Lett. 87, 021901 (2005).
9. S. S. Nair, J. Thomas, C. S. S. Sandeep, M. R. Anantharaman, and R. Philip, “An optical limiter based on ferrofluids,” Appl. Phys. Lett. 92, 171908 (2008).
10. S. Pu, X. Chen, Z. Di, and Y. Xia, “Relaxation property of the magnetic-fluid-based fiber-optic evanescent field modulator,” J. Appl. Phys. 101, 053532 (2007).
11. P. Das, M. Colombo, and D. Prosperi, “Recent advances in magnetic-fluid hyperthermia for cancer therapy,” Colloids Surf. B 174, 42–55 (2019).
12. P. P. Macaroff, A. R. Simioni, Z. G. M. Lacava, E. C. D. Lima, P. C. Morais, and A. C. Tedesco, “Studies of cell toxicity and binding of magnetic nanoparticles with blood stream macromolecules,” J. Appl. Phys. 99, 08S102 (2006).
13. H. W. Davies and J. P. Llewellyn, “Magneto-optic effects in ferrofluids,” J. Phys. D 13, 2327–2336 (1980).
14. K. V. Erin, “Magnetooptical studies of aggregates of nanoparticles in colloidal solutions of magnetite,” Opt. Spectrosc. 106(6), 858–862 (2009) [Opt. Spektrosk. 106(6), 945–949 (2009)].
15. B. R. Jennings, M. Xu, and P. J. Ridler, “Ferrofluid structures: a magnetic dichroism study,” Proc. R. Soc. London Ser. A 456, 891–907 (2000).
16. M. Xu and P. J. Ridler, “Linear dichroism and birefringence effects in magnetic fluids,” J. Appl. Phys. 82, 326–332 (1997).
17. F. Donatini, S. Neveu, and J. Monin, “Measurements of longitudinal magneto-optic effects in ferrofluids: a dynamical method,” J. Magn. Magn. Mater. 162, 69–74 (1996).
18. J. E. Martin, K. M. Hill, and C. P. Tigges, “Magnetic-field-induced optical transmittance in colloidal suspensions,” Phys. Rev. E 59(5B), 5676–5692 (1999).
19. J. Philip, J. M. Laskar, and B. Raj, “Magnetic-field-induced extinction of light in a suspension of Fe3 O4 nanoparticles,” Appl. Phys. Lett. 92, 221911 (2008).
20. K. V. Yerin and S. A. Kunikin, “Change in the intensity of light scattering in a magnetite colloid under the simultaneous action of electric and magnetic fields,” Opt. Spectrosc. 102(5), 765–770 (2007) [Opt. Spektrosk. 102(5), 843–848 (2007)].
21. C. V. Yerin and V. I. Vivchar, “Ellipsometry of magnetic fluid in a magnetic field,” J. Magn. Magn. Mater. 498, 166144 (2020).
22. S. Odenbach, “Microstructure and rheology of magnetic hybrid materials,” Arch. Appl. Mech. 86, 269–279 (2016).
23. A. R. Zakinyan and Y. I. Dikansky, “Effect of microdrops deformation on electrical and rheological properties of magnetic fluid emulsion,” J. Magn. Magn. Mater. 431, 103–106 (2017).
24. I. M. Subbotin and A. O. Ivanov, “Weak-field magnetic susceptibility of ferrofluid emulsions: the influence of droplet polydispersity,” Magnetohydrodynamics 52(1), 269–276 (2016).
25. Yu. I. Dikanski˘ı, D. V. Gladkikh, S. A. Kunikin, and A. A. Zolotukhin, “On magnetic ordering in colloids of single-domain particles,” Tech. Phys. 57(5), 711–715 (2012) [Zh. Tekh. Fiz. 57(5), 135–139 (2012)].
26. Y. I. Dikansky, D. V. Gladkikh, A. A. Zakinyan, A. G. Ispiryan, and A. R. Zakinyan, “Magnetic and structural properties of magnetic colloids with a well-developed system of magnetized aggregates,” J. Mol. Liq. 319, 114171 (2020).
27. W. E. L. Haas and J. E. Adams, “Diffraction effects in ferrofluids,” Appl. Phys. Lett. 27(10), 571–572 (1975).
28. J.-C. Bacri and D. Salin, “Optical scattering on ferrofluid aggregates,” J. Phys. Lett. 43(22), 771–777 (1982).
29. J. Liu, E. M. Lawrence, A. Wu, M. L. Ivey, G. A. Flores, K. Javier, J. Bibette, and J. Richard, “Field-induced structures in ferrofluid emulsions,” Phys. Rev. Lett. 74(14), 2828–2831 (1995).
30. D. A. Usanov, A. V. Skripal’, and S. A. Ermolaev, “Diffraction of light by agglomerates in a layer of magnetic fluid situated in a magnetic field parallel to the plane of the layer,” Tech. Phys. Lett. 23(2), 115–116 (1997) [Pis’ma Zh. Tekh. Fiz. 23(3), 64–66 (1997)].
31. D. A. Usanov and A. V. Skripal’, “Anisotropic scattering of polarized light in a ferrofluid layer,” Tech. Phys. Lett. 23(9), 659–660 (1997) [Pis’ma Zh. Tekh. Fiz. 23(17), 7–10 (1997)].
32. P. Davies, J. Popplewell, J. P. Liewellyn, and K. O. Grady, “Diffraction effects in magnetic fluid composites,” J. Phys. C: Solid State Phys. 18(21), L661 (2000).
33. D. A. Usanov, A. E. Postel’ga, T. S. Bochkova, and V. N. Gavrilin, “Dynamics of nanoparticle agglomeration in a magnetic fluid in a varying magnetic field,” Tech Phys. 61(3), 464–466 (2016) [Zh. Tekh. Fiz. 86(3), 146–148 (2016)].
34. S. Radha, S. Mohan, and C. Pai, “Diffraction patterns in ferrofluids: effect of magnetic field and gravity,” Phys. B 448, 341–345 (2014).
35. J. Li, X. Liu, Y. Lin, L. Bai, Q. Li, and X. Chen, “Field modulation of light transmission through ferrofluid film,” Appl. Phys. Lett. 91, 253108 (2007).
36. M.-F. Chung, S. E. Chou, and C.-M. Fu, “Time-dependent dynamic behavior of light diffraction in ferrofluid,” J. Appl. Phys. 111, 07B333 (2012).
37. S. Z. Malynych, A. Tokarev, S. Hudson, G. Chumanov, J. Ballato, and K. G. Kornev, “Magneto-controlled illumination with opto-fluidics,” J. Magn. Magn. Mater. 322, 1894–1897 (2010).
38. K. Parekh, R. Patel, R. V. Upadhyay, and R. V. Mehta, “Field-induced diffraction patterns in a magneto-rheological suspension,” J. Magn. Magn. Mater. 289, 311–313 (2005).
39. I. Turek, J. Stelina, C. Musil, M. Timko, P. Kopcansky, M. Koneracka, and L. Tomco, “The effect of self-diffraction in magnetic fluids,” J. Magn. Magn. Mater. 201, 167–169 (1999).
40. Yu. I. Dikanski˘ı, E. A. Bondarenko, and V. I. Rubacheva, “Diffraction of light by structural formations in a ferrofluid,” in Abstracts of Reports of the Thirteenth Riga Conference on Magnetohydrodynamics, Salaspils, Latvia, 1990, part 3, pp. 15–16.
41. Yu. I. Dikanski˘ı, E. A. Achkasova, and N. G. Polikhronidi, “Diffraction scattering of light by structured ferrofluids in a shearing current,” Kolloidn. Zh. 57(1), 113–116 (1995).
42. S. S. Belykh and C. V. Yerin, “Magneto-optic effect in water-based magnetic emulsion,” Magnetohydrodynamics 54(1–2), 5–10 (2018).
43. S. S. Belykh and K. V. Yerin, “The effect of changing the transparency of a magnetic emulsion under the action of magnetic and hydro-dynamic fields,” Izv. Ross. Akad. Nauk Ser. Fiz. 83(7), 962–965 (2019).
44. J. Ge, Y. Hu, and Y. Yin, “Highly tunable superparamagnetic colloidal photonic crystals,” Angew. Chem., Int. Ed. 46, 1–5 (2007).
45. V. N. Lopatin, A. V. Priezzhev, A. D. Aponasenko, N. V. Shepelevich, V. V. Lopatin, P. V. Pozhilenkova, and I. V. Prostakova, Light-Scattering Methods in the Analysis of Water Dispersions of Biological Media (Fizmatlit, Moscow, 2004).
46. H. Muhlenweg and D. E. Hirleman, “Laser diffraction spectroscopy: Influence of particle shape and a shape adaptation technique,” Part. Part. Syst. Charact. 15, 163–169 (1998).
47. S. Yu. Nikitin, A. E. Lugovtsov, and A. V. Priezzhev, “On the problem of the diffraction pattern visibility in laser diffractometry of red blood cells,” Quantum Electron. 40(12), 1074–1076 (2010) [Kvant. Elektron. 40(12), 1074–1076 (2010)].
48. G. S. Landsberg, Optics (Fizmatlit, Moscow, 2003).
49. S. V. Porshnev, Computer Modeling of Physical Processes in the MATLAB Package (Lan’, St. Petersburg, 2011.