ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2021-88-04-44-51

Polarization multiplexing and hybrid modulation based bandwidth efficient NG-PON2 coexisting GPON and XG-PON

For Russian citation (Opticheskii Zhurnal):

Ramandeep Kaur, Simranjit Singh Polarization multiplexing and hybrid modulation based bandwidth efficient NG-PON2 coexisting GPON and XG-PON (Эффективные мультигигабайтные широкополосные пассивные оптические сети следующего поколения (NG-PON2), использующие поляризационное мультиплексирование и гибридную модуляцию) [на англ. яз.] // Оптический журнал. 2021. Т. 88. № 4. С. 44–51. http://doi.org/10.17586/1023-5086-2021-88-04-44-51

 

Ramandeep Kaur, Simranjit Singh Polarization multiplexing and hybrid modulation based bandwidth efficient NG-PON2 coexisting GPON and XG-PON (Эффективные мультигигабайтные широкополосные пассивные оптические сети следующего поколения (NG-PON2), использующие поляризационное мультиплексирование и гибридную модуляцию) [in English] // Opticheskii Zhurnal. 2021. V. 88. № 4. P. 44–51. http://doi.org/10.17586/1023-5086-2021-88-04-44-51

For citation (Journal of Optical Technology):

Ramandeep Kaur and Simranjit Singh, "Polarization multiplexing and hybrid modulation based bandwidth efficient NG-PON2 coexisting with GPON and XG-PON," Journal of Optical Technology. 88(4), 196-201 (2021). https://doi.org/10.1364/JOT.88.000196

Abstract:

The bandwidth efficiency is an important design parameter for the next-generation passive optical network stage 2 (NG-PON2). In this paper, two optical line terminal (OLT) designs based on polarization split state are proposed for NG-PON2. The first method doubles the data rate per wavelength by separate amplitude modulation of both polarization states. Whereas in the second method, differential phase-shift keying (DPSK) modulates another data on each amplitude-modulated state, this approach increases data rate per wavelength by four-folds. The proposed system provides NG-PON2 access while coexisting with a gigabit passive optical network (GPON) and 10 GPON (XG-PON). The proposed system design serves 1024 NG-PON2 next-generation passive optical network stage 2 (ONUs), 128 GPON ONUs, and 128 XG-PON ONUs. The transmission performance of the system is verified by evaluating the (BER) for varied received power. The acceptable bit error rate level of less than 10−9 is considered in this work.

Keywords:

next-generation passive optical network stage 2, gigabit passive optical network, 10 gigabit passive optical network, modulation formats, polarization division multiplexing

Acknowledgements:

The authors wish to convey thanks to the Ministry of Electronics and Information Technology, Government of India for providing assistance through Visvesvaraya Ph.D. Scheme for Electronics & IT.

OCIS codes: 060.0060, 060.4250, 060.4510

References:

1. Sumanpreet, Sanjeev Dewra. Performance evaluation of fiber to the home at 2.48 Gb/s using downstream transmission GPON // 2nd International Conference on Electrical, Electronics, Engineering Trends, Communication, Optimization and Science. Lankapali India. 1 January 2015. P. 83–86.
2. Ramandeep Sharma, Sanjeev Dewra, Aruna Rani. Performance analysis of hybrid PON (WDM–TDM) with equal and unequal channel spacing // Journal of Optical Communications. 2015. V. 37. Iss. 2. P. 1–6.
3. Meera Handa, Maninder Lal Singh, Rajandeep Singh. Performance analysis of optical WDM system based on unequal spaced channel allocation (USCA) scheme // Optik. 2014. V. 125. Iss. 16. P. 4262–4264.
4. ITU-T.G.984.2. Gigabit-Capable Passive Optical Networks (G-PON): Physical Media Dependent (PMD) Layer Specification // ITU-T Rec. G.984.2 (2003)/Amd.2 (03/2008). https://www.itu.int/rec/T-REC-G.984.2/en.5. ITU-T G.987. 10-Gigabit-Capable passive optical network (XG-PON) // https://www.itu.int/rec/T-REC-G.987-201206-I/en.
6. ITU-T G.989. 40-gigabit-Capable Passive Optical Networks (NG-PON2): General requirements // Mar. 2013. https://www.itu.int/rec/T-REC-G.989.1/en.
7. Mat Sharif K.A., Ngah N.A., Ahmad A., Khairi K., Manaf Z.A., Tarsono D. Demonstration of XGS-PON and GPON co-existing in the same passive optical network // IEEE 7th International Conference on Photonics (ICP). 9-11 April 2018. Kuah. Malaysia. P. 1–3.
8. Cybulski R., Perlicki K. Polarization attractor optimization for optical signal polarization control // Opt. Quant. Electron. 2018. V. 50. No. 8. P. 308.
9. Badraoui N., Berceli. Enhancing capacity of optical links using polarization multiplexing // Optical and Quantum Electronics. 2019. V. 51. No. 9. P. 310.
10. Xiong F., Zhong W., Kim H. A WDM-PON enabling broadcast service based on polarization multiplexing // International Quantum Electronics Conference (IQEC) and Conference on Lasers and Electro-Optics (CLEO) Pacific Rim incorporating the Australasian Conference on Optics, Lasers and Spectroscopy and the Australian Conference on Optical Fibre Technology. 2011. Sydney. NSW. P. 474–476.
11. Huang Q., Liu J., Zeng D., Chen B. Simultaneous transmission of point-to-point data and selective multicast data using polarization division Multiplexing in a WDM-PON // International Conference on Communications and Mobile Computing. 12-14 April 2010. Shenzhen. China. P. 7–9.
12. Jung H., Tran N., Okonkwo C., Tangdiongga E., Koonen T. 10 Gb/s bi-directional symmetric WDM-PON system based on POLMUX technique with polarization-insensitive ONU // Conference on Optical Fiber Communication (OFC/NFOEC), collocated National Fiber Optic Engineers Conference. San Diego. California United States. 21–25 March 2010. P. 1–3.
13. Tan L., Liu J., Hong X., Chen B. WDM-PON using ASK modulation with polarization multiplexing // Symposium on Photonics and Optoelectronics. Wuhan. China. 14-16 Aug. 2009. P. 1–3.