ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2021-88-04-52-60

Metal-coated nano-grating for polarizer under large deviation angle incidence

For Russian citation (Opticheskii Zhurnal):

Jimin Fang, Bo Wang Metal-coated nano-grating for polarizer under large deviation angle incidence (Металлизированные нанорешётки для поляризаторов с большим диапазоном углов падения) [на англ. яз.] // Оптический журнал. 2021. Т. 88. № 4. С. 52–60. http://doi.org/10.17586/1023-5086-2021-88-04-52-60

 

Jimin Fang, Bo Wang Metal-coated nano-grating for polarizer under large deviation angle incidence (Металлизированные нанорешётки для поляризаторов с большим диапазоном углов падения) [in English] // Opticheskii Zhurnal. 2021. V. 88. № 4. P. 52–60. http://doi.org/10.17586/1023-5086-2021-88-04-52-60

For citation (Journal of Optical Technology):

Jimin Fang and Bo Wang, "Metal-coated nano-grating for a polarizer under large deviation angle incidence," Journal of Optical Technology. 88(4), 202-208 (2021). https://doi.org/10.1364/JOT.88.000202

Abstract:

In order to obtain a grating-based polarizer with high efficiency and high extinction ratio, we proposed a multilayer metal-coated nano-grating operated at the wavelength of 1550 nm. Different from previous most reported structures, the suggested structure of the grating works at the incident angle 45 degrees, so that the reflection direction is perpendicular to the transmission direction. The reflection extinction ratio and transmission extinction ratio can reach 49.15 dB and 55.49 dB, respectively. The metal layer and Ta2O5 dielectric layer are added to improve the performance of the grating. Most importantly, the results show that the extinction ratio of the two orthogonally polarized components of light can be larger than 20 dB within angular width 26.1°, between 29.1−55.2°. The grating can be widely used in liquid crystal display devices owing to its small size and strong anti-interference ability.

Keywords:

multilayer metal-coated grating, polarizer, large deviation angle incidence

Acknowledgements:

This work is supported by the Science and Technology Program of Guangzhou (202002030284, 202007010001).

OCIS codes: 050.1380, 230.5440, 050.1950

References:

1. Yoshino T. Theoretical analysis of a tilted fiber grating polarizer by the beam tracing approach // J. Opt. Soc. Am. B 2012. V. 29. P. 2478.
2. Zhou G., Tian W. Subwavelength nanostructured grating for generating visible radially and azimuthally polarized light // Optik. 2018. V. 172 P. 1104.
3. Zhang G., Wu X., Li S., Guang D., Liu W., Zuo C., Fang S., Yu B. Fiber optic birefringence enhanced accelerometer based on polarized modal interferometer // Opt. Commun. 2019. V. 442. P. 8.
4. Tong K., Guo J., Dang P., Wang M., Wang F., Zhang Y., Wang M. Surface plasmon resonance fiber optic biosensor-based graphene and photonic crystal // Mod. Phys. Lett. B. 2018. V. 32. P. 1850072.
5. Xu F., Zhu J., Fan S., Qi Y. Control of slow light in three- and four-level graphene nanostructures // Mod. Phys. Lett. B 2019. V. 33. P. 1950226.
6. Wang Y., Huang Q., Zhu W., Yang M. Simultaneous measurement of temperature and relative humidity based on FBG and FP interferometer // IEEE Photon. Technol. Lett. 2018. V. 30. P. 833.
7. Yuan Z., Li W., Yang R., Yang L., Wang F., Guo J., Xu Z., Feng Q., Wang Y., Hu Q. 16-channel flexible optical passband filter array for CDCF ROADM // Opt. Commun. 2019. V. 450. P. 61.
8. Pitris S., Mitsolidou C., Moralis-Pegios M., Alexoudi T., Pleros N. Crosstalk-aware wavelength-switched all-to-all optical interconnect using sub-optimal AWGRs // IEEE Photon. Technol. Lett. 2019. V. 31. P. 1507.

9. Chang C.-H., Tsai C.-H. A large-scale optical fiber sensor network with reconfigurable routing path functionality // IEEE Photon. J. 2019. V. 11. P. 6801811.
10. Sun Y., Cai H., Wang X. Theoretical analysis of metamaterial-gold auxiliary grating sensing structure for surface plasmon resonance sensing application based on polarization control method // Opt. Commun. 2017. V. 405. P. 343.
11. Qu Z., Zhang Y., Zhang B. A convenient photopolarimeter based on a polarization sensitive metamaterial // Opt. Commun. 2019. V. 430. P. 342.
12. Awad E. Nano-plasmonic Bundt Optenna for broadband polarization-insensitive and enhanced infrared detection // Sci. Rep. 2019. V. 9. P. 12197.
13. Liu M., Yang X., Zhao B., Hou J., Shum P. Square array photonic crystal fiber-based surface plasmon resonance refractive index sensor // Mod. Phys. Lett. B. 2017. V. 31. P. 1750352.
14. Zhang Y., Tian A., Liu B., Liu W., Wang D. Stokes parameters polarization scattering properties of optical elements surface of different material // Optik. 2019. V. 185. P. 1238.
15. Yang K., Long X., Huang Y., Wu S. Design and fabrication of ultra-high precision thin-film polarizing beam splitter // Opt. Commun. 2011. V. 284. P. 4650.
16. Sanjuan F., Gaborit G., Coutaz J.-L. Sub-wavelength terahertz imaging through optical rectification // Sci. Rep. 2018. V. 8. P. 13492.
17. Zhu Q., Xi S., Jiao X., Wang H., Lang L., Hu D., Zhang Y. Multidirectional sub-wavelength slit splitter and polarization analyzer for THz surface plasmons // Opt. Commun. 2019. V. 432. P. 112.
18. Watanabe T., Fedoryshyn Y. Leuthold J. 2-D grating couplers for vertical fiber coupling in two polarizations // IEEE Photon. J. 2019. V. 11. P. 7904709.
19. Li G., Shen Y., Xiao G., Jin C. Double-layered metal grating for high-performance refractive index sensing // Opt. Express. 2015. V. 23. P. 8995.
20. Wang Q., Cao S., Du Y., Tao C. Broadband polarizing beam splitter based on two-layer metal grating with a high refractive index dielectric layer // Optik. 2017. V. 140. P. 268.
21. Moharam M.G., Pommet D.A., Grann E.B., Gaylord T.K. Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach // J. Opt. Soc. Am. A. 1995. V. 12. P. 1077.
22. Amorim V.A., Maia J.M., Alexandre D., Marques P.V.S. Monolithic add-drop multiplexers in fused silica fabricated by femtosecond laser direct writing // J. Lightw. Technol. 2017. V. 35. P. 3615.
23. Amorim V.A., Maia J.M., Alexandre D., Marques P.V.S. Loss mechanisms of optical waveguides inscribed in fused silica by femtosecond laser direct writing // J. Lightw. Technol. 2019. V. 37. P. 2240.
24. Jelinek M., Drahokoupil J., Jurek K., Kocourek T., Vanek P. Nanocrystalline ferroelectric BaTiO3/Pt/fused silica for implants synthetized by pulsed laser deposition method // Laser Phys. 2017. V. 27. P. 095601.
25. Botten I. C., Craig M. S., Mcphedran R. C., Adams J. L. Andrewartha J.R. The dielectric lamellar diffraction grating // Opt. Acta. 1981. V. 28. P. 413.
26. Hu A., Zhou C., Cao H., Wu J., Yu J., Jia W. Modal analysis of high-efficiency wideband reflective gratings // J. Opt. 2012. V. 14. P. 055705.
27. Zheng J., Zhou C., Feng J., Cao H., Lu P. A metal-mirror-based reflecting polarizing beam splitter // J. Opt. A: Pure Appl. Opt. 2009. V. 11. P. 015710.
28. Rytov S.M. Electromagnetic properties of a finely stratified medium // Sov. Phys. JETP. 1956. V. 2. P. 466.
29. Haggans C.W., Li L., Kostuk R.K. Effective-medium theory of zeroth-order lamellar gratings in conical mountings // Appl. Opt. 1993. V. 10. P. 2217.
30. Yi D., Yan Y., Liu H., Lu S., Guo J. Broadband polarizing beam splitter based on the form birefringence of a subwavelength grating in the quasi-static domain // Opt. Lett. 2004. V. 29. P. 754.
31. Wu J., Zhou C., Yu J. TE polarization broadband absorber based on stacked metal-dielectric grating structure // Opt. Commun. 2015. V. 341. P. 85.