DOI: 10.17586/1023-5086-2021-88-05-15-22
УДК: 535.514.4
Visual estimation of the effective thickness of lithium niobate phase plates using a crossed Wood–Šolc filter
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Криштоп В.В., Савич Д.Е., Попова А.В., Гончарова П.С., Максименко В.А., Сидоров Н.В., Палатников М.Н., Круглов М.С., Бондарева Т.В., Сюй А.В., Перминов А.В. Визуальная оценка эффективной толщины фазовых пластинок ниобата лития с помощью скрещенного фильтра Вуда–Шольца // Оптический журнал. 2021. Т. 88. № 5. С. 15–22. http://doi.org/10.17586/1023-5086-2021-88-05-15-22
Krishtop V.V., Savich D.E., Popova A.V., Goncharova P.S., Maksimenko V.A., Sidorov N.V., Palatnikov M.N., Kruglov M.S., Bondareva T.V., Syuy A.V., Perminov A.V. Visual estimation of the effective thickness of lithium niobate phase plates using a crossed Wood–Šolc filter [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 5. P. 15–22. http://doi.org/10.17586/1023-5086-2021-88-05-15-22
V. V. Krishtop, D. E. Savich, A. V. Popova, P. S. Goncharova, V. A. Maksimenko, N. V. Sidorov, M. N. Palatnikov, M. S. Kruglov, T. V. Bondareva, A. V. Syuy, and A. V. Perminov, "Visual estimation of the effective thickness of lithium niobate phase plates using a crossed Wood–Šolc filter," Journal of Optical Technology. 88(5), 236-241 (2021). https://doi.org/10.1364/JOT.88.000236
This paper presents a solution of the straight-through transformative problem for an anisotropic optical channel, using as an example a crossed interference–polarization Wood–Šolc filter in the visible region. Based on experiments, the effective thickness is computed for a system composed of two quasi-plane-parallel lithium niobate phase plates that constitute the filter. A new accelerated method has been developed for analyzing interference patterns at the filter output that makes it possible to estimate the thickness difference between a reference plate and a test plate, beginning with 4 µm at a temperature of 20°C without using additional measurement devices.
crossed Wood–Šolc filter, lithium niobate, Stokes-Mueller vector-matrix apparatus
Acknowledgements:This work was carried out as part of the “Program of state support of leading companies that develop and provide external products, services, and platform solutions based on technologies and solutions for digital transformation of high–priority branches of the economy and social sphere” (Contract No. 2/549/2020 from 7/23/2020) and with the financial support of the Ministry of Education of Russia as part of the implementation of the program of activity of the “Radiation Infrastructure” scientific world-class education center.
OCIS codes: 350.4600, 330.7326, 120.2130, 120.4140, 230.4110
References:1. P. Hariharan, Basics of Interferometry (Elsevier, San Diego, 2007).
2. V. V. Atuchin and T. Khasanov, “High-accuracy contactless method for determination of chemical composition of lithium niobate crystals by their birefringence,” Opt. Spectrosc. 107(2), 212–216 (2009) [Opt. Spektrosk. 107(2), 225–230 (2009)].
3. P. V. Volkov, “The development of interference and polarization methods for measuring the physical parameters of solids,” Author’s abstract of candidate’s dissertation (Izd. IFM RAN, Nizhni Novgorod, 2008).
4. G. I. Ryabtsev, M. V. Bogdanovich, A. V. Grigor’ev, V. N. Dudikov, K. V. Lepchenkov, A. G. Ryabtsev, P. V. Shpak, and M. A. Shchemelev, “Thermo-optic properties of diode-pumped Nd:YAG lasers with ceramic and crystalline active elements,” J. Opt. Technol. 87(2), 105–109 (2020) [Opt. Zh. 87(2), 50–55 (2020)].
5. N. Mukhopadhyay, A. Saha, and K. Bhattacharya, “Study on superachromatism of a quarter-wave retarder for the visible range of the spectrum,” J. Opt. Technol. 87(11), 638–641 (2020) [Opt. Zh. 87(11), 3–9 (2020)].
6. D. E. Kukushkin, A. R. Belan, A. V. Bakholdin, D. Yu. Kolobov, S. A. Chuprakov, M. L. Demidov, and V. N. Vasil’ev, “Preliminary estimate of instrumental polarization effects in the LST-3 Large Solar Telescope,” J. Opt. Technol. 87(12), 705–714 (2020) [Opt. Zh. 87(12), 3–17 (2020)].
7. N. Quan, C. Zhang, T. Mu, and C. You, “Spectroscopic Mueller matrix polarimeter based on spectro-temporal modulation,” Opt. Express 28(25), 37758–37772 (2020).
8. P. S. Goncharova, “Spectral characteristics of broad-band radiation subjected to electro-optic modulation,” Author’s abstract of candidate’s dissertation (DVGUPS, Khabarovsk, 2012).
9. E. F. Ishchenko and A. L. Sokolov, Polarization Optics (Fizmatlit, Moscow, 2012).
10. V. N. Snopko, The Polarization Characteristics of Optical Radiation and How to Measure Them (Nauka i Tekhnika, Minsk, 1992).
11. D. E. Savich, A. V. Popova, and V. V. Krishtop, “Matrix method for determining the effective thickness of a phase plate in a Wood’s filter,” Byull. Nauchn. Soobshch. Khabar. (24), 67–71 (2019).
12. D. E. Savich and A. V. Popova, “Modeling the operation of an interference-polarization Šolc filter, using as an example the absolute-blackbody spectrum of a solid,” in Physics, Pure and Applied Research, Education, Materials of the XVII Regional Scientific Conference, 2019, pp. 170–173.
13. A. V. Popova, P. S. Goncharova, N. V. Sidorov, M. V. Palatnikov, A. V. Syu, A. I. Livashvili, and V. V. Krishtop, “Using the Šolc optical filter for determination of crystalline plates thickness,” Izv. Vyssh. Uchebn. Zaved. Priborostr. 62(3), 285–290 (2019).
14. Yu. S. Kuz’minov, Electro-optical and Nonlinear Lithium Niobate Crystal (Nauka, Moscow, 1987).
15. L. H. Deng, X. M. Gao, Z. S. Cao, W. D. Chen, Y. Q. Yuan, W. J. Zhang, and Z. B. Gong, “Improvement to Sellmeier equation for periodically poled LiNbO3 crystal using mid-infrared difference-frequency generation,” Opt. Commun. 268, 110–114 (2006).