DOI: 10.17586/1023-5086-2021-88-05-23-35
УДК: 535, 681.7
Mach–Zehnder modulator based on tapered waveguide and carrier plasma dispersion in photonic crystal
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Yuchen Hu, Heming Chen, Tong Xiang Mach–Zehnder modulator based on tapered waveguide and carrier plasma dispersion in photonic crystal (Модулятор Маха–Цендера, использующий дисперсию в плазме носителей заряда в суженном фотонно-кристаллическом волноводе) [на англ. яз.] // Оптический журнал. 2021. Т. 88. № 5. С. 23–35. http://doi.org/10.17586/1023-5086-2021-88-05-23-35
Yuchen Hu, Heming Chen, Tong Xiang Mach–Zehnder modulator based on tapered waveguide and carrier plasma dispersion in photonic crystal (Модулятор Маха–Цендера, использующий дисперсию в плазме носителей заряда в суженном фотонно-кристаллическом волноводе) [in English] // Opticheskii Zhurnal. 2021. V. 88. № 5. P. 23–35. http://doi.org/10.17586/1023-5086-2021-88-05-23-35
Y. C. Hu, H. M. Chen, and T. Xiang, "Mach–Zehnder modulator based on a tapered waveguide and carrier plasma dispersion in photonic crystal," Journal of Optical Technology. 88(5), 242-251 (2021). https://doi.org/10.1364/JOT.88.000242
Electro-optic modulators with wide bandwidth and low loss are necessary as the demand for high-speed integrated communication systems increases. We propose a Mach–Zehnder modulator based on photonic crystal. A tapered structure based on photonic crystal is introduced to suppress the cascading loss between the nanowire waveguide and photonic crystal waveguide at input and output. We designed and optimized a photonic crystal bent waveguide to reduce the reflection loss at each corner. The parameters of the Mach–Zehnder modulator are calculated using the threedimensional finite-difference time-domain method. The numerical results show that the insertion loss and extinction ratio at the operating wavelength of 1550 nm are 0.22 and 15.2 dB respectively. The 3 dB bandwidth can reach up to 72 GHz. This Mach–Zehnder modulator has the advantages of low loss and small size (47.8×11.6×0.22 μm), which can be applied in photonic integrated systems.
photonic crystal, modulator, multimode interference coupling, optics
Acknowledgements:This work was supported by the National Natural Science Foundation of China under Grant numbers 61571237 and 61077084; the Natural Science Foundation of Jiangsu Province of China under Grant number BK20151509; and Colleges and Universities in Jiangsu Province Plans to Graduate Research and Innovation under Grant number KYCX18_0843.
OCIS codes: 130.3120, 130.5296, 130.4110
References:1. Reed G.T., Mashanovich G., Gardes F.Y., et al. Silicon optical modulators // Nat. Photonics. 2010. V. 4. P. 518–526.
2. Bahrami H., Sepehrian H., Park C.S., et al. Time-domain large-signal modeling of traveling-wave modulators on SOI // J. Lightwave Technol. 2016. V. 34. P. 2812–2823.
3. Qi N., Xiao X., Hu S., et al. Co-design and demonstration of a 25-Gb/s silicon-photonic Mach–Zehnder modulator with a CMOS-based high-swing driver // IEEE J. Sel. Top. Quantum Electron. 2016. V. 22. P. 131–140.
4. Zhou Y.Y., Zhou L.J., Zhu H.K., et al. Modeling and optimization of a single-drive push-pull silicon Mach–Zehnder modulator // Photonics Res. 2016. V. 4. P. 153–161.
5. Sato H., Miura H., Qiu F., et al. Low driving voltage 5. Mach–Zehnder interference modulator constructed from an electro-optic polymer on ultra-thin silicon with a broadband operation // Opt. Exp. 2017. V. 25. P. 768–775.
6. Hinakura Y., Terada Y., Tamura T., et al. Wide spectral characteristics of Si photonic crystal Mach–Zehnder modulator fabricated by complementary metal-oxide-semiconductor process // Photonics Res. 2016. V. 3. P. 17.
7. Nguyen H.C., Yazawa N., Hashimoto S., et al. Sub-100 μm photonic crystal Si optical modulators: Spectral, athermal, and high-speed performance // IEEE J. Sel. Top. Quantum Electron. 2013. V. 19. P. 127–137.
8. Notomi M., Yamada K., Shinya A., et al. Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs // Phys. Rev. Lett. 2001. V. 87. P. 253902.
9. Terada Y., Ito H., Nguyen H.C., et al. Theoretical and experimental investigation of low-voltage and low-loss 25-Gbps Si photonic crystal slow light Mach–Zehnder modulators with interleaved p/n junction // Front Phys. 2014. V. 2. P. 61.
10. Terada Y., Kondo K., Abe R., et al. Full C-band Si photonic crystal waveguide modulator // Opt. Lett. 2017. V. 42. P. 5110–5112.
11. Terada Y., Tatebe T., Hinakura Y., et al. Si photonic crystal slow-light modulators with periodic p-n junctions // J. Lightwave Technol. 2017. V. 35. P. 1684–1692.
12. Baba T., Nguyen H.C., Yazawa N., et al. Slow-light Mach–Zehnder modulators based on Si photonic crystals // Sci. Technol. Adv. Mater. 2014. V. 15. P. 024602.
13. Stárek R., Miková M., Straka I., et al. Experimental realization of SWAP operation on hyper-encoded qubits // Opt. Exp. 2018. V. 26. P. 8443–8452.
14. Lalanne P., Talneau A. Modal conversion with artificial materials for photonic-crystal waveguides // Opt. Exp. 2002. V. 10. P. 354–359.
15. Khoo E.H., Liu A.Q., Zhang X.M., et al. Exact step-coupling theory for mode-coupling behavior in geometrical variation photonic crystal waveguides // Phys. Rev. B. 2009. V. 80 P. 035101.
16. Talneau A., Agio M., Soukoulis C.M., et al. High-bandwidth transmission of an efficient photonic-crystal mode converter // Opt. Lett. 2004. V. 29. P. 1745–1747.
17. Hu Y.C., Chen H.M., Zhou T.H. Mach–Zehnder modulator based on photonic crystal and nanowire waveguide // J. Infrared Millimeter Waves. 2019. V. 38. P. 499–507.
18. Tucker R.S., Ku P.C., Chang-Hasnain C.J. Slow-light optical buffers: Capabilities and fundamental limitations // J. Lightwave Technol. 2005. V. 23. P. 4046–4066.
19. Khurgin J.B. Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: Comparative analysis // JOSA B. 2005. V. 22. P. 1062–1074.
20. Miller D.A.B. Fundamental limit to linear one-dimensional slow light structures // Phys. Rev. Lett. 2007. V. 99. P. 203903.
21. Soref R.A., Bennett B.R. Electrooptical effects in silicon // IEEE J. Quantum Electron. 1987. V. 23. P. 123–129.
22. Yu T.B., Jiang X.Q., Yang J.Y., et al. Self-imaging effect of TM modes in photonic crystal multimode waveguides only exhibiting band gaps for TE modes // Phys. Lett. A. 2007. V. 369. P. 167–171.
23. Qi B., Ping Y., Li Y., et al. Ultracompact electrooptic silicon modulator with horizontal photonic crystal slotted slab // IEEE Photonics Technol. Lett. 2010. V. 22. P. 724–726.
24. Lavrinenko A., Borel P., et al. Comprehensive FDTD modelling of photonic crystal waveguide components // Opt. Exp. 2004. V. 12(2). P. 234–48.
25. Sorace-Agaskar C., Leu J., Watts M.R., et al. Electro-optical co-simulation for integrated CMOS photonic circuits with VerilogA // Opt. Exp. 2015. V. 23(21). P. 27180.
26. Eldhose P., Arun Th., Anuj D., et al. Active microring based tunable optical power splitters // Opt. Commun. 2016. V. 359. P. 311–315.
27. Hendrickson J., Soref R., Sweet J., et al. Ultrasensitive silicon photonic-crystal nanobeam electro-optical modulator: Design and simulation // Opt. Exp. 2014. V. 22(3). P. 3271.
28. Mcguire D., Liu A. Modeling active silicon photonics components // Integrated Photonics Research. Silicon & Nanophotonics. 2013. OSA Technical Digest (online). P. IM2B.2.
29. Arjmand A., Mcguire D. Complete optoelectronic simulation of patterned silicon solar cells // Internat. Conf. Numerical Simulation of Optoelectronic Devices. IEEE, 2014.
30. Hendrickson J.R., Richard S., Ricky G. Improved 2×2 Mach–Zehnder switching using coupled-resonator photonic-crystal nanobeams // Opt. Lett. 2018. V. 43(2). P. 287.
31. Bendib S., Zegadi A. Improved sensitivity of 2D photonic crystal Mach–Zehnder interferometer-based pressure sensor // Plasmonics. 2018. V. 13(3). DOI: 10.1007/s11468-017-0525-1.
32. Nikoufard M., Amadeh S. InP-based photonic crystal electro-optic modulator // Optik – Internat. J. Light and Electron Optics. 2015. V. 126(19). P. 2219–2222.
33. Rao S., Casalino M., Coppola G., et al. Design of amorphous silicon photonic crystal-based M–Z modulator operating at 1.55 μm // Internat. Conf. Photonics. IEEE, 2016.
34. Jain S., Rajput S., Kaushik V., et al. High speed optical modulator based on silicon slotted-rib waveguide // Opt. Commun. 2019. V. 434. P. 49–53.
35. Hinakura Y., Terada Y., Arai H., et al. Electro-optic phase matching in a Si photonic crystal slow light modulator using meander-line electrodes // Opt. Exp. 2018. V. 26(9). P. 11538.