ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2021-88-05-60-64

УДК: 535.3

Light propagation in a meniscus made of uniaxial crystal

For Russian citation (Opticheskii Zhurnal):

Ветров В.Н., Игнатенков Б.А., Лебанин В.С. Распространение света в мениске из одноосного кристалла // Оптический журнал. 2021. Т. 88. № 5. С. 60–64. http://doi.org/10.17586/1023-5086-2021-88-05-60-64

 

Vetrov V.N., Ignatenkov B.A., Lebanin V.S. Light propagation in a meniscus made of uniaxial crystal [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 5. P. 60–64. http://doi.org/10.17586/1023-5086-2021-88-05-60-64

For citation (Journal of Optical Technology):

V. N. Vetrov, B. A. Ignatenkov, and V. S. Lebanin, "Light propagation in a meniscus made of uniaxial crystal," Journal of Optical Technology. 88(5), 270-273 (2021). https://doi.org/10.1364/JOT.88.000270

Abstract:

Light propagation in a meniscus made of a crystal with a radially directed optical axis is considered under geometric optics approximation. A model of discrete refraction of an extraordinary ray in the meniscus is developed. Nonlinear propagation of extraordinary rays in a meniscus, which depends on the geometric dimensions of the component, ratio of refractive indices for ordinary and extraordinary rays, and local direction of the optical axis of the crystal, is demonstrated.

Keywords:

uniaxial crystals, leucosapphire, birefringency, extraordinary ray

OCIS codes: 160.1190, 160. 4760

References:

1. R. Zhang, D. Lin, C. Yin, and X. Jiang, “The primary structure design of a birefringent lens with the concept of pseudo-chromatic aberration,” Meas. Sci. Technol. 17(6), 1367–1371 (2006).
2. F. E. Veiras, L. I. Perez, and M. T. Garea, “Phase shift formulas in uniaxial media: an application to waveplates,” Appl. Opt. 49(15), 2769–2777 (2010).
3. S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, and E. Santamato, “Tunable liquid crystal q-plates with arbitrary topological charge,” Opt. Express 19(5), 4085–4090 (2011).
4. V. N. Vetrov and B. A. Ignatenkov, “Textured optical synthetic sapphire,” J. Opt. Technol. 75(2), 124–127 (2008) [Opt. Zh. 75(2), 70–73 (2008)].
5. V. N. Vetrov and B. A. Ignatenkov, “Optical properties of plastically deformed synthetic sapphire,” in Proceedings of the 8th International Conference “Applied Optics 2008” (2008), pp. 103–105.
6. V. N. Vetrov and B. A. Ignatenkov, “Birefringence in leucosapphire products upon oblique incidence of rays,” Opt. Spectrosc. 106(1), 147–151 (2009) [Opt. Spektrosk. 106(1), 154–158 (2009)].
7. V. N. Vetrov and B. A. Ignatenkov, “Determining birefringence in hemispherical shells of synthetic sapphire,” J. Opt. Technol. 76(7), 446–448 (2009) [Opt. Zh. 76(7), 92–95 (2009)].
8. V. N. Vetrov and B. A. Ignatenkov, “Determination of birefringence in a hemisphere from a uniaxial crystal,” Opt. Spectrosc. 113(4), 437–439 (2012) [Opt. Spektrosk. 113(4), 481–483 (2012)].
9. V. N. Vetrov, B. A. Ignatenkov, V. A. Pis’mennyi, and K. V. Dukel’skii, “Method for fabrication of optical lenses from synthetic sapphire,” Russian patent 2377614 (2008).
10. V. N. Vetrov, B. A. Ignatenkov, V. A. Pis’mennyi, G. T. Petrovskii, E. N. Ryzhikov, and K. V. Dukel’skii, “Method for fabrication of optical lenses from monocrystals,” Russian patent 2313809 (2007).
11. V. N. Vetrov, B. A. Ignatenkov, V. A. Pis’mennyi, and K. V. Dukel’skii, “Flat lens made of synthetic sapphire and method for its fabrication,” Russian patent 2482522 (2013).
12. V. N. Vetrov, B. A. Ignatenkov, and V. E. Yakobson, “Transformation of a plane wavefront in hemispherical lenses made of leuco-sapphire,” Opt. Spectrosc. 124(1), 94–97 (2018) [Opt. Spektrosk. 124(1), 96–99 (2018)].