ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2021-88-05-65-75

УДК: 535.317

Composition of collimating optical systems using aberration theory

For Russian citation (Opticheskii Zhurnal):

Романова Г.Э., Xuanlin Qiao Composition of collimating optical systems using aberration theory (Композиция коллимирующих оптических систем с использованием теории аберраций) [на англ. яз.] // Оптический журнал. 2021. Т. 88. № 5. С. 65–75. http://doi.org/10.17586/1023-5086-2021-88-05-65-75

 

Romanova G.E., Xuanlin Qiao Composition of collimating optical systems using aberration theory (Композиция коллимирующих оптических систем с использованием теории аберраций) [in English] // Opticheskii Zhurnal. 2021. V. 88. № 5. P. 65–75. http://doi.org/10.17586/1023-5086-2021-88-05-65-75

For citation (Journal of Optical Technology):

G. E. Romanova and Xuanlin Qiao, "Composition of collimating optical systems using aberration theory," Journal of Optical Technology. 88(5), 274-281 (2021). https://doi.org/10.1364/JOT.88.000274

Abstract:

Collimating lenses working with light emitting diodes are widely used in many fields and may also be applied as a basic lens shape for various design tasks. At the initial stages of the optical design, it is important to be able to evaluate the potential properties of the design, for the collimating lens it is the residual divergence angle. In many cases, existing methods for designing illumination systems require much computational work and give no opportunity to understand the possible collimating properties of a system. The method presented is based on the idea of splitting the beam into several zones and applying the aberration theory. It provides a clear understanding of how to choose or to construct a starting point for further design of a collimating system working with light emitting diodes and evaluate its collimation properties.

Keywords:

collimating lens, LED optics, aberration theory

Acknowledgements:

Xuanlin Qiao acknowledges support from the China Scholarship Council (201908090046).

OCIS codes: 080.2740, 080.3620, 080.1010, 080.1753

References:

1. Syu Y.-S., Wu C.-Y., and Lee Y.-C. Double-sided freeform lens for light collimation of light emitting diodes // Appl. Sci. 2019. V. 9. № 24. P. 5452–5464.
2. Bäuerle A., Bruneton A., Wester R., Stollenwerk J., and Loosen P. Algorithm for irradiance tailoring using multiple freeform optical surfaces // Opt. Exp. 2012. V. 20. № 13. P. 14477–14485.
3. Bruneton A., Bäuerle A., Wester R., Stollenwerk J., and Loosen P. High resolution irradiance tailoring using multiple freeform surfaces // Opt. Exp. 2013. V. 21. № 9. P. 10563–10571.
4. Dross O., Mohedano R., Benitez P., Minano J.C., Chaves J., Blen J., Hernandez M., Munoz F. Review of SMS design methods and real world applications // Proc. SPIE. 2004. V. 5529. Nonimaging Optics and Efficient Illumination Systems. P. 35–47.
5. Gimenez-Benitez P., Miñano J.C., Blen J., Arroyo R.M., Chaves J., Dross O., Hernandez M., Falicoff W. Simultaneous multiple surface optical design method in three dimensions // Opt. Eng. 2004. V. 43. № 7. P. 1489–1503.
6. Miñano J.C., Benítez P., Liu J., Infante J., Chaves J., Wang L. Applications of the SMS method to the design of compact optics // Proc. SPIE. 2010. V. 7717. Optical Modelling and Design. P. 77170I.
7. Feng Z., Huang L., Jin G., and Gong M. Designing double freeform optical surfaces for controlling both irradiance and wavefront // Opt. Exp. 2013. V. 21. № 23. P. 28693–28701.
8. Ma D., Feng Z., and Liang R. Freeform illumination lens design using composite ray mapping // Appl. Opt. 2015. V. 54. № 3. P. 498–503.
9. Ma D., Feng Z., and Liang R. Tailoring freeform illumination optics in a double-pole coordinate system // Appl. Opt. 2015. V. 54. № 3. P. 2395–2399.
10. Assefa B.G., Saastamoinen T., Pekkarinen M., Nissinen V., Biskop J., Kuittinen M., Turunen J., and Saarinen J. Realizing freeform lenses using an optics 3D-printer for industrial based tailored irradiance distribution // OSA Continuum. 2019. V. 2. № 3. P. 690–702.
11. Desnijder K., Hanselaer P., and Meuret Y. Ray mapping method for off-axis and non-paraxial freeform illumination lens design // Opt. Lett. 2019. V. 44. № 4. P. 771–774.
12. Grabovičkić D., Benítez P., and Miñano J.C. TIR RXI collimator // Opt. Exp. 2012. V. 20. № S1. P. A51–A61.
13. Wang L., Qian K., and Luo Y. Discontinuous free-form lens design for prescribed irradiance // Appl. Opt. 2007. V. 46. № 18. P. 3716–3723.
14. Ding Y., Liu X., Zheng Z., and Gu P. Freeform LED lens for uniform illumination // Opt. Exp. 2008. V. 16. № 17. P. 12958–12966.
15. Chen J.-J., Huang Z.-Y., Liu T.-S., Tsai M.-D., and Huang K.-L. Freeform lens design for light-emitting diode uniform illumination by using a method of source-target luminous intensity mapping // Appl. Opt. 2015. V. 54. № 28. P. E146–E152.

16. Chen W.-C., Lin H.Y. Freeform lens design for LED illumination with high uniformity and efficiency // Proc. SPIE. 2011. V. 8123. Eleventh International Conference on Solid State Lighting. P. 81230K.
17. Wang G., Wang L., Li L., Wang D., and Zhang Y. Secondary optical lens designed in the method of sourcetarget mapping // Appl. Opt. 2011. V. 50. № 21. P. 4031–4036.
18. Fournier F.R., Cassarly W.J., and Rolland J.P. Fast freeform reflector generation using source-target maps // Opt. Exp. 2010. V. 18. № 5. P. 5295–5304.
19. https://www.cree.com
20. https://www.osram.com/os/
21. Wang G., Wang L., Li F., and Zhang G. Collimating lens for light-emitting-diode light source based on nonimaging optics // Appl. Opt. 2012. V. 51. № 11. P. 1654–1659.
22. Hui X., Liu J., Wan Y., and Lin H. Realization of uniform and collimated light distribution in a single freeform-Fresnel double surface LED lens // Appl. Opt. 2017. V. 56. № 15. P. 4561–4565.
23. Anh Nguyen Doan Quoc, Lai Min-Feng, Ma Hsin-Yi, and Lee Hsiao-Yi. Design of a free-form lens for LED light with high efficiency and uniform illumination // Appl. Opt. 2014. V. 53. № 29. P. H140–H145.
24. Chen J.-J. and Lin C.-T. Freeform surface design for a light-emitting diode-based collimating lens // Opt. Eng. 2010. V. 49. № 9. P. 093001.
25. Chen J.-J., Wang T.-Y., Huang K.-L., Liu T.-S., Tsai M.-D., and Lin C.-T. Freeform lens design for LED collimating illumination // Opt. Exp. 2012. V. 20. № 10. P. 10984–10995.
26. Luo T., Wang G. Compact collimators designed with a modified point approximation for light-emitting diodes // Proc. SPIE. 2017. V. 10379. Nonimaging Optics: Efficient Design for Illumination and Solar Concentration XIV. P. 103790G.
27. Bogdanov N., Potemin I.S., Zhdanov D., Zhdanov A. Algorithm of design optics for illumination system with wide beam angle // Proc. SPIE. 2019. V. 11185. Optical Design and Testing IX. P. 1118515.
28. Grammatin A.P., Romanova G.E., and Tsyganok E.A. Computer modelling accompanying the study of disciplines associated with the design of optical systems // JOT. 2012. V. 79. № 5. P. 308–311.
29. Чуриловский В.Н. Теория хроматизма и аберраций третьего порядка. M.: Maшиностроение, 1968. С. 312.
30. ZEMAX Optic Studio 18.7 User Manual.