DOI: 10.17586/1023-5086-2021-88-05-76-81
УДК: 53.087.92, 681.7.064.64
Preprogrammed focusing of a micro-objective of an angle-measuring setup
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Кирьянов В.П., Бобков А.В., Гурин Н.А., Зотов А.А., Каракоцкий А.Г., Кирьянов А.В. Предварительно программируемая фокусировка микрообъектива углоизмерительной установки // Оптический журнал. 2021. Т. 88. № 5. С. 76–81. http://doi.org/10.17586/1023-5086-2021-88-05-76-81
Kiriyanov V.P., Bobkov A.V., Gurin N.A., Zotov A.A., Karakotskyi A.G., Kiriyanov A.V. Preprogrammed focusing of a micro-objective of an angle-measuring setup [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 5. P. 76–81. http://doi.org/10.17586/1023-5086-2021-88-05-76-81
V. P. Kir’yanov, A. V. Bobkov, N. A. Gurin, A. A. Zotov, A. G. Karakotskii, and A. V. Kir’yanov, "Preprogrammed focusing of a micro-objective of an angle-measuring setup," Journal of Optical Technology. 88(5), 282-285 (2021). https://doi.org/10.1364/JOT.88.000282
The application of traditional methods for automatic focusing of micro-objectives in readout heads of measuring equipment used for control of metrological characteristics of precision optical angle-measuring structures (circular dials, rasters, and multibit graduated discs) poses significant difficulties. Application of the principle of preprogrammed focusing (prefocusing) of the micro-objective is proposed in such equipment. A functional scheme of the prefocusing subsystem of an AE.1686 circular measuring and diagnostic setup based on a Nano-OP65M linear positioning stage is considered. Experimental results obtained during a test operation of a setup with such a subsystem are presented.
autofocusing, angle-measuring structure, element topology, angular error, circular measuring and diagnostic setup
Acknowledgements:This study was supported by the subsidy for financial support for execution of the state assignment of the Institute of Automation and Electrometry of the Siberian Branch of the Russian Academy of Sciences for the period of 2021–2023.
OCIS codes: 230.4000, 230.0250, 230.0040, 120.5475
References:1. A. V. Kir’yanov, A. A. Zotov, A. G. Karakotski˘ı, V. P. Kir’yanov, A. D. Petukhov, and V. V. Chukanov, “On-line monitoring of optical precision goniometric structures,” J. Opt. Technol. 86(9), 579–581 (2019) [Opt. Zh. 86(9), 60–62 (2019)].
2. V. P. Kiryanov, A. V. Kiryanov, and V. V. Chukanov, “Using the differential method of measurement to control the accuracy of precision angle measuring structures,” Optoelectron. Instrum. Data Proc. 52(4), 354–359 (2016) [Avtometriya 52(4), 45–52 (2016)].
3. A. V. Kir’yanov, A. A. Zotov, A. G. Karakotskii, V. P. Kir’yanov, A. D. Petukhov, and V. V. Chukanov, “Features of operational control of precision angle-measuring structures,” Meas. Tech. 62(5), 422–428 (2019) [Izmer. Tekh. (5), 31–36 (2019)].
4. A. V. Kir’yanov, V. P. Kir’yanov, I. V. Volokhov, and A. V. Bobkov, “Using a circular-scanning method to form and monitor the topology of high-precision photomasks for integrated sensors of optical quantities,” J. Opt. Technol. 83(7), 410–414 (2016) [Opt. Zh. 83(7), 26–31 (2016)].
5. V. P. Kir’yanov, V. P. Koronkevich, V. I. Nalivayko, and A. G. Poleshchuk, Kinoforms: Optical System for Synthesis of Elements, Preprint No. 99 (IAiE SO AN SSSR, Novosibirsk, 1979).
6. V. M. Vedernikov, A. G. Verkhoglyad, V. M. Gurenko, L. B. Kastorskii, A. V. Kiryanov, V. P. Kiryanov, S. A. Kokarev, and A. R. Sametov, “Laser pattern generator for synthesizing the microrelief of diffractive optical elements on 3D axisymmetric surfaces,” Avtometriya 40(2), 46–58 (2004).
7. A. G. Verkhoglyad, V. M. Gurenko, L. B. Kastorskii, V. M. Vedernikov, V. P. Kir’yanov, S. A. Kokarev, and A. R. Sametov, “Method of automatic focusing for recording information on curvilinear surfaces,” Russian patent 2262749 (2010).
8. http://www.madcitylabs.com/nanoopseries.html.