ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2021-88-06-03-10

УДК: 535.33, 621.373, 535

Production of dichromatic light with a rotating polarization vector using a single Bragg cell

For Russian citation (Opticheskii Zhurnal):

Котов В.М., Аверин С.В., Воронко А.И. Формирование вращающегося вектора поляризации двухцветного излучения с использованием одной ячейки Брэгга // Оптический журнал. 2021. Т. 88. № 6. С. 3–10. http://doi.org/10.17586/1023-5086-2021-88-06-03-10

 

Kotov V.M., Averin S.V., Voronko A.I. Production of dichromatic light with a rotating polarization vector using a single Bragg cell [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 6. P. 3–10. http://doi.org/10.17586/1023-5086-2021-88-06-03-10

For citation (Journal of Optical Technology):

V. M. Kotov, S. V. Averin, and A. I. Voronko, "Production of dichromatic light with a rotating polarization vector using a single Bragg cell," Journal of Optical Technology. 88(6), 292-296 (2021). https://doi.org/10.1364/JOT.88.000292

Abstract:

We propose an approach for producing a rotating polarization vector of dichromatic light controlled by the acoustic frequency. This approach is based on diffraction of one of the eigenmodes for each monochromatic component during two passes of dichromatic light through a gyrotropic acousto-optical cell and is demonstrated using rotation in the polarization of dichromatic light generated by an Ar laser at wavelengths of 0.488 µm and 0.514 µm using a paratellurite acousto-optical cell operating at 108 MHz.

Keywords:

acousto-optical diffraction, Bragg mode, dichromatic light, rotating polarization vector

Acknowledgements:

The research was conducted within the state assignment (theme No. 0030-2019-0014) and was partially supported by RFBR (grant No. 19-07-00071).

OCIS codes: 230.0230, 230.1040

References:

1. V. P. Koronkevich, G. G. Tarasov, and V. A. Khanov, “Measurement of rotation angles using a two-frequency laser,” Avtometriya (1), 68–71 (1974).
2. B. S. Rinkevichius, Laser Anemometry (Energiya, Moscow, 1978).
3. F. P. Ivanov, A. F. Polyakov, and S. A. Shindin, “Experimental assessment of whether it is possible to use a dichromatic contactless laser anemometry system to measure the flow characteristics of heated air in a circular pipe,” Avtometriya (4), 99–103 (1987).
4. S. N. Antonov, V. M. Kotov, and V. N. Sotnikov, “Bragg polarization beam-splitters utilizing a TeO2 crystal,” Sov. Phys. Tech. Phys. 36, 101–104 (1991) [Zh. Tekh. Fiz. 61, 168–173 (1991)].
5. V. M. Kotov, “Apparatus for splitting and shifting frequencies for laser anemometry,” J. Opt. Technol. 68(11), 832–835 (2001) [Opt. Zh. 68(11), 47–51 (2001)].
6. A. D. Kersey, A. Dandridge, and W. K. Burns, “Two-wavelength fibre gyroscope with wide dynamic range,” Electron. Lett. 22(18), 935–937 (1986).
7. V. M. Kotov, “Acousto-optical 2 × 2 switches of optical beams with different wavelengths for fibre-optic gyroscopes,” Quantum Electron. 27(5), 459–462 (1997) [Kvant. Elektron. 24(5), 471–474 (1997)].
8. E. A. Konshina, M. A. Fedorov, and L. P. Amosova, “Determining the director tilt and phase lag of liquid-crystal cells by optical methods,” J. Opt. Technol. 73(12), 830–833 (2006) [Opt. Zh. 73(12), 9–13 (2006)].
9. E. A. Konshina and D. S. Kostomarov, “Phase modulation of light in a two-frequency nematic liquid crystal,” J. Opt. Technol. 74(10), 720–722 (2007) [Opt. Zh. 73(10), 88–90 (2007)].
10. L. N. Magdich and V. J. Molchanov, Acoustooptical Devices and Their Applications (Gordon and Breach Science, New York, 1989; Soviet Radio, Moscow, 1978).
11. V. I. Balakshi˘ı, V. N. Parygin, and L. E. Chirkov, Physical Underpinnings of Acousto-Optics (Radio i Svyaz’, Moscow, 1985).
12. J. Xu and R. Stroud, Acousto-Optic Devices: Principles, Design and Applications (Wiley, New York, 1992).
13. V. M. Kotov, “High-frequency two-color splitting of laser light,” Opt. Spectrosc. 77(3), 437 (1994) [Opt. Spektrosk. 77(3), 493–497 (1994)].
14. V. M. Kotov, “Acousto-optical splitting of two-color radiation in the case of oblique incidence of an acoustic wave,” Opt. Spectrosc. 79(2), 282–287 (1995) [Opt. Spektrosk. 79(2), 307–312 (1995)].
15. V. M. Kotov and E. V. Kotov, “Acoustooptic diffraction of two-color radiation at the limit frequency of an acoustic wave,” Instrum. Exp. Tech. 63(1), 101–105 (2020) [Prib. Tekh. Eksp. (1), 110–114 (2020)].
16. A. M. Kolychev, B. S. Rinkevichius, and V. L. Chudov, “Two-component optical Doppler velocity measuring device with an ultrasonic modulator,” Radio Eng. Electron. Phys. 20(10), 148–151 (1975) [Radiotekh. Elektron. 20(10), 2215–2219 (1975)].
17. Yu. G. Vasilenko and Yu. N. Dubnishchev, “Two-frequency Rayleigh interferometer,” Opt. Spectrosc. 45(5), 793–794 (1978) [Opt. Spektrosk. 45(5) 958–961 (1978)].
18. V. P. Klochkov, L. F. Kozlov, I. V. Potykevich, and M. S. Soskin, Laser Anemometry, Remote Spectroscopy, and Interferometry (Naukova Dumka, Kiev, 1985).
19. G. F. Kolbina, A. E. Grishchenko, Yu. N. Sazanov, and I. N. Shtennikova, “Optical anisotropy of molecules of pyromellite-dianilic amido acid polyesters,” Polym. Sci., Ser. A 51(7), 769–772 (2009) [Vysokomol. Soedin. Ser. A 51(7), 1104–1108 (2009)].
20. G. V. Ramenskaya, ed., Pharmaceutical Chemistry (BINOM Laboratoriya Znanii, Moscow, 2015).
21. V. M. Kotov, G. N. Shkerdin, and A. N. Bulyuk, “Two-dimensional image edge enhancement by two-phonon Bragg diffraction,” Quantum Electron. 41(12), 1109–1113 (2011) [Kvant. Elektron. 41(12), 1109–1113 (2011)].
22. V. M. Kotov, Acousto-Optics: Bragg Diffraction of Polychromatic Light (Yanus-K, Moscow, 2016).
23. M. P. Shaskol’skaya, ed., Acoustic Crystals (Nauka, Moscow, 1982).
24. V. A. Kizel’ and V. I. Burkov, Gyrotropy of Crystals (Nauka, Moscow, 1980).
25. J. F. Nye, Physical Properties of Crystals (Clarendon Press, Oxford, 1964; Mir, Moscow, 1967).
26. F. I. Fedorov, Optics of Anisotropic Media (URSS, Moscow, 2004).