DOI: 10.17586/1023-5086-2021-88-06-48-57
УДК: 538.958
Spectral properties and structure of transparent glass-ceramics based on Fe:MgAl2O4 and Fe:ZnAl2O4 crystals
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Дымшиц О.С., Букина В.С., Еремеев К.Н., Алексеева И.П., Центер М.Я., Хубецов А.А., Басырова Л.Р., Попков В.И., Лойко П.А., Жилин А.А. Спектральные свойства и структура прозрачных стеклокристаллических материалов на основе алюмомагниевой и алюмоцинковой шпинелей, допированных ионами железа // Оптический журнал. 2021. Т. 88. № 6. С. 48–57. http://doi.org/10.17586/1023-5086-2021-88-06-48-57
Dymshits O.S., Bukina V.S., Eremeev K.N., Alekseeva I.P., Tsenter M.Ya., Khubetsov A.A., Basyrova L.R., Popkov V.I., Loiko P.A., Zhilin A.A. Spectral properties and structure of transparent glass-ceramics based on Fe:MgAl2O4 and Fe:ZnAl2O4 crystals [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 6. P. 48–57. http://doi.org/10.17586/1023-5086-2021-88-06-48-57
O. S. Dymshits, V. S. Bukina, K. N. Eremeev, I. P. Alekseeva, M. Ya. Tsenter, A. A. Khubetsov, L. R. Basyrova, V. I. Popkov, P. A. Loiko, and A. A. Zhilin, "Spectral properties and structure of transparent glass-ceramics based on Fe:MgAl2O4 and Fe:ZnAl2O4 crystals," Journal of Optical Technology. 88(6), 323-329 (2021). https://doi.org/10.1364/JOT.88.000323
Transparent glass-ceramics based on nanocrystals of magnesium aluminate and zinc aluminate spinels doped with iron ions have been obtained for the first time to our knowledge. The materials are promising for middle-IR spectral range laser technology. These materials are synthesized by heat-treating glasses of special composition in the temperature range of 720∘C−1050∘C . The glasses and glass-ceramics are studied by X-ray diffraction analysis and Raman and optical absorption spectroscopy. Their densities are measured, and differential scanning calorimetry data are obtained. It is shown that iron ions in glass-ceramics enter into tetrahedral and octahedral sites of crystals with a spinel structure. Increasing the heat-treatment temperature increases the absorption in the 2µm region originating from the 5E→5T2(5D) transition of Fe2+ ions in tetrahedral sites in spinel crystals.
glass-ceramics, structure, MgAl2O4 nanocrystals, ZnAl2O4 nanocrystals, iron ions, absorption spectra
Acknowledgements:The research was partially supported by RFBR, grant No. 19-03-00855.
OCIS codes: 160.6990, 160.4670, 160.4236, 160.2750, 300.1030, 300.6450, 160.4760
References:1. S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ - and Fe2+ -doped mid-IR laser materials,” Laser Photon. Rev. 4(5), 21–41 (2010).
2. A. M. Malyarevich, I. A. Denisov, K. V. Yumashev, O. S. Dymshits, and A. A. Zhilin, “Optical absorption and luminescence study of cobalt-doped magnesium aluminosilicate glass ceramics,” J. Opt. Soc. Am. B 19(8), 1815–1821 (2002).
3. A. M. Malyarevich, I. A. Denisov, Y. V. Volk, K. V. Yumashev, O. S. Dymshits, and A. A. Zhilin, “Nanosized glass-ceramics doped with transition metal ions: nonlinear spectroscopy and possible laser applications,” J. Alloys Compd. 341, 247–250 (2002).
4. P. A. Loiko, O. S. Dymshits, N. A. Skoptsov, A. M. Malyarevich, A. A. Zhilin, I. P. Alekseeva, M. Y. Tsenter, K. V. Bogdanov, X. Mateos, and K. V. Yumashev, “Crystallization and nonlinear optical properties of transparent glass-ceramics with Co:Mg(Al,Ga)2 O4 nanocrystals for saturable absorbers of lasers at 1.6–1.7 μm,” J. Phys. Chem. Sol. 103, 132–141 (2017).
5. P. Loiko, A. Belyaev, O. Dymshits, I. Evdokimov, V. Vitkin, K. Volkova, M. Tsenter, A. Volokitina, M. Baranov, E. Vilejshikova, A. Baranov, and A. Zhilin, “Synthesis, characterization and absorption saturation of Co:ZnAl2 O4 (gahnite) transparent ceramic and glass-ceramics: a comparative study,” J. Alloys Compd. 725, 998–1005 (2017).
6. I. V. Glazunov, A. M. Malyarevich, K. V. Yumashev, O. S. Dymshits, I. P. Alekseeva, M. Y. Tsenter, K. V. Bogdanov, S. S. Zapalova, and A. A. Zhilin, “Linear and non-linear optical properties of transparent glass-ceramics based on Co2+ -doped Zn(Al,Ga)2 O4 spinel nanocrystals,” J. Non-Cryst. Sol. 557, 120627 (2021).
7. O. Dymshits, V. Vitkin, I. Alekseeva, A. Khubetsov, M. Tsenter, A. Polishchuk, A. Volokitina, J. M. Serres, X. Mateos, A. Zhilin, and P. Loiko, “Transparent glass-ceramics based on Co-doped γ -Gax Al2−x O3 spinel nanocrystals for passive Q-switching of Er lasers,” J. Lumin. 234 , 117993 (2021).
8. K. V. Yumashev, I. A. Denisov, N. N. Posnov, P. V. Prokoshin, and V. P. Mikhailov, “Nonlinear absorption properties of Co2+ :MgAl2 O4 crystal,” Appl. Phys. B 70, 179–194 (2000).
9. E. Hanamura, Y. Kawabe, H. Takashima, T. Sato, and A. Tomita, “Optical properties of transition-metal doped spinels,” J. Nonlin. Opt. Phys. Mater. 12(4), 467–473 (2003).
10. L. R. Pinckney, “Transparent, high-strain-point spinel glass-ceramics,” J. Non-Cryst. Sol. 255, 171–177 (1999).
11. I. Alekseeva, O. Dymshits, M. Tsenter, A. Zhilin, V. Golubkov, I. Denisov, N. Skoptsov, A. Malyarevich, and K. Yumashev, “Optical applications of glass-ceramics,” J. Non-Cryst. Solids 356, 3042–3058 (2010).
12. V. V. Golubkov, O. S. Dymshits, A. A. Zhilin, T. I. Chuvaeva, and A. V. Shashkin, “On the phase separation and crystallization of glasses in the MgO–Al2 O3 –SiO2 –TiO2 system,” Glass Phys. Chem. 29(3), 254–266 (2003).
13. V. V. Golubkov, O. S. Dymshits, V. I. Petrov, A. V. Shashkin, M. Ya. Tsenter, A. A. Zhilin, and U. Kang, “Small-angle X-ray scattering and low-frequency Raman scattering study of liquid phase separation and crystallization in titania-containing glasses of the ZnO–Al2 O3 –SiO2 system,” J. Non-Cryst. Sol. 351, 711–721 (2005).
14. V. V. Golubkov, T. I. Chuvaeva, O. S. Dymshits, A. A. Shashkin, A. A. Zhilin, W.-B. Byun, and K.-H. Lee, “The influence of NiO on phase separation and crystallization of glasses of the MgO–Al2 O3 –SiO2 –TiO2 system,” J. Non-Cryst. Sol. 351, 711–721 (2005).
15. I. Alekseeva, A. Baranov, O. Dymshits, V. Ermakov, V. Golubkov, M. Tsenter, and A. Zhilin, “Influence of CoO addition on phase separation and crystallization of glasses of the ZnO–Al2 O3 –SiO2 –TiO2 system,” J. Non-Cryst. Sol. 357(24), 3928–3939 (2011).
16. A. Dugue, O. Dymshits, L. Cormier, P. Loiko, I. Alekseeva, M. Tsenter, K. Bogdanov, G. Lelong, and A. Zhilin, “Structural transformations and spectroscopic properties of Ni-doped magnesium aluminosilicate glass-ceramics nucleated by a mixture of TiO2 and ZrO2 for broadband near-IR light emission,” J. Alloys Compnd. 780, 137–146 (2019).
17. N. A. El-Shafi and M. M. Morsi, “Optical absorption and infrared studies of some silicate glasses containing titanium,” J. Mater. Sci. 32(19), 5185–5189 (1997).
18. L. E. Bausa, J. G. Sole, A. Duran, and J. M. Fernandez Navarro, “Characterization of titanium-induced optical absorption bands in phosphate glasses,” J. Non-Cryst. Sol. 127, 267–272 (1991).
19. W. Höland and G. H. Beall, Glass-Ceramic Technology (Wiley, New Jersey, 2012).
20. V. V. Vargin, The Production of Colored Glass, I. V. Grebenshchikov, ed. (Gizlegprom, Moscow, 1940).
21. V. Bukina, O. Dymshits, I. Alekseeva, M. Tsenter, S. Zapalova, A. Khubetsov, A. Zhilin, L. Basyrova, A. Volokitina, J. M. Serres, X. Mateos, and P. Loiko, “Optical glass-ceramics based on nanosized crystals of magnesium aluminate spinel doped with iron ions,” J. Phys.: Conf. Ser. 1697, 012156 (2020).
22. K. Eremeev, O. Dymshits, I. Alekseeva, A. Khubetsov, S. Zapalova, M. Tsenter, L. Basyrova, P. Loiko, A. Zhilin, and V. Popkov, “Spectral properties of novel transparent glass-ceramics basedon Fe2+ :ZnAl2 O4 nanocrystals,” J. Phys.: Conf. Ser. 1697, 012125 (2020).
23. “MAUD materials analysis using diffraction, a Rietveld extended program to perform the combined analysis,” http://maud.radiographema.eu/.
24. H. Lipson and H. Steeple, Interpretation of X-ray Powder Patterns (McMillan Martins Press, London, 1970).
25. M. Vranki ´c, B. Gržeta, V. Mandi ´c, E. Tkal ˇcec, S. Miloševi ´c, M. ˇCeh, and B. Rakvin, “Structure, microstructure and photoluminescence of nanocrystalline Ti-doped gahnite,” J. Alloys Compnd. 543, 213–220 (2012).
26. R. A. Fregola, H. Skogby, F. Bosi, V. D’Ippolito, G. B. Andreozzi, and U. Hå lenius, “Optical absorption spectroscopy study of the causes for color variations in natural Fe-bearing gahnite: insights from iron valency and site distribution data,” Am. Mineral. 99, 2187–2195 (2014).
27. J. B. Higgins, P. H. Ribbe, and R. K. Herd, “Sapphirine I,” Contrib. Mineral. Petrol. 68, 349–356 (1979).
28. Ya. S. Bobovich, “Spectroscopic investigation of titanium coordination in some vitreous materials,” Opt. Spectrosc. 14(5), 647–654 (1963).
29. A. Chopelas and A. M. Hofmeister, “Vibrational spectroscopy of aluminate spinels at 1 atm and of MgAl2 O4 to over 200 kbar,” Phys. Chem. Miner. 18 (5), 279–293 (1991).
30. S. Slotznick and S.-H. Shim, “In-situ Raman spectroscopy measurements of MgAl2 O4 spinel up to 1400◦ C,” Amer. Mineral. 93, 470–476 (2008).
31. V. Moha ˇcek-Grošev, M. Vranki ´c, A. Maksimovi ´c, and V. Mandi ´c, “Influence of titanium doping on the Raman spectra of nanocrystalline ZnAl2 O4 ,” J. Alloys Compnd. 697, 90–95 (2017).
32. V. D’Ippolito, G. B. Andreozzi, P. P. Lottici, and D. Bersani, “Raman study of MgAl2 O4 –FeAl2 O4 and MgAl2 O4 MgFe2 O4 spinel solid solutions,” in 8th European Conference on Mineralogy and Spectroscopy (2015).
33. E. S. Gaffney, “Spectra of tetrahedral Fe2+ in MgAl2 O4 ,” Phys. Rev. B 8(7), 3484–3486 (1973).
34. D. Lenaz, H. Skogby, F. Nestola, and F. Princivalle, “OH incorporation in nearly pure MgAl2 O4 natural and synthetic spinels,” Geochim. Cosmochim. Acta 72(2), 475–479 (2008).
35. G. D. Bromiley, F. Nestola, S. A. T. Redfern, and M. Zhang, “Water incorporation in synthetic and natural MgAl2 O4 spinel,” Geochim. Cosmochim. Acta 74(2), 705–718 (2010).