ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2021-88-06-84-92

УДК: 681.7.05

Fabrication of high-Q crystalline whispering gallery mode microcavities using single-point diamond turning

For Russian citation (Opticheskii Zhurnal):

Миньков К.Н, Лихачев Г.В., Павлов Н.Г., Данилин А.Н., Шитиков А.Е., Юрин А.И., Лоншаков Е.А., Булыгин Ф.В., Лобанов В.Е., Биленко И.А. Изготовление высокодобротных кристаллических микрорезонаторов c модами шепчущей галереи с использованием точечного алмазного точения // Оптический журнал. 2021. Т. 88. № 6. С. 84–92. http://doi.org/10.17586/1023-5086-2021-88-06-84-92

 

Minkov K.N., Likhachev G.V., Pavlov N.G., Danilin A.N., Shitikov A.E., Yurin A.I., Lonshakov E.A., Bulygin F.V., Lobanov V.E., Bilenko I.A. Fabrication of high-Q crystalline whispering gallery mode microcavities using single-point diamond turning [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 6. P. 84–92. http://doi.org/10.17586/1023-5086-2021-88-06-84-92

For citation (Journal of Optical Technology):

K. N. Min’kov, G. V. Likhachev, N. G. Pavlov, A. N. Danilin, A. E. Shitikov, A. I. Yurin, E. A. Lonshakov, F. V. Bulygin, V. E. Lobanov, and I. A. Bilenko, "Fabrication of high-Q crystalline whispering gallery mode microcavities using single-point diamond turning," Journal of Optical Technology. 88(6), 348-353 (2021). https://doi.org/10.1364/JOT.88.000348

Abstract:

A method for the fabrication of high-Q crystalline whispering gallery mode optical microresonators using diamond turning and further asymptotic abrasive polishing is developed and described. The proposed method allows the fabrication of microresonators with a predefined geometry and a Q-factor higher than 107. A step-by-step fabrication procedure is presented, important parameters ensuring the optimal quality of the surface of the fabricated microresonators are determined, the inspection procedure for the principal parameters is described, and a review of the fabrication of microresonators from different materials is presented.

Keywords:

optical microcavities, whispering gallery modes, optical frequency combs, diamond turning, abrasive polishing, quality measurement

Acknowledgements:

The research was supported by Russian Science Foundation (20-12-00344).
This study was performed using the equipment of the center for collective usage of the All-Russian Scientific-Research Institute of Optical-Physical Measurements (http://www.ckp.vniiofi.ru/) and the center for collective usage “Advanced Imaging Core Facility” of Skoltech (https://www.skoltech.ru).

OCIS codes: 120.0120, 160.1190, 160.4330

References:

1. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7–8), 393–397 (1989).
2. M. L. Gorodetsky, Optical Microresonators with Enormous Q-factors (Fizmatlit, Moscow, 2011).
3. V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes—part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 15–32 (2006).
4. D. V. Strekalov, C. Marquardt, A. B. Matsko, H. G. L. Schwefel, and G. Leuchs, “Nonlinear and quantum optics with whispering gallery resonators,” J. Opt. 18(12), 123002 (2016).
5. J. Ward and O. Benson, “WGM microresonators: sensing, lasing and fundamental optics with microspheres,” Laser Photon. Rev. 5(4), 553–570 (2011).
6. J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
7. G. Lin, A. Coillet, and Y. K. Chembo, “Nonlinear photonics with high-Q whispering-gallery-mode resonators,” Adv. Opt. Photon. 9(4), 828–890 (2017).
8. V. V. Vasiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, and A. V. Yarovitsky, “Narrow-line-width diode laser with a high-Q microsphere resonator,” Opt. Commun. 158, 305–312 (1998).
9. W. Liang, V. Ilchenko, A. A. Eliyahu, D. Savchenkov, A. B. Matsko, and D. Seidel, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
10. N. M. Kondratiev, V. E. Lobanov, A. V. Cherenkov, A. S. Voloshin, N. G. Pavlov, S. Koptyaev, and M. L. Gorodetsky, “Self-injection locking of a laser diode to a high-Q WGM microresonator,” Opt. Express 25(23), 28167–28178 (2017).
11. R. R. Galiev, N. G. Pavlov, N. M. Kondratiev, S. Koptyaev, V. E. Lobanov, A. S. Voloshin, A. S. Gorodnitskiy, and M. L. Gorodetsky, “Spectrum collapse, narrow linewidth, and Bogatov effect in diode lasers locked to high-Q optical microresonators,” Opt. Express 26(23), 30509–30522 (2018).
12. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
13. A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
14. T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361(6402), eaan8083 (2018).
15. M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
16. J. Riemensberger, A. Lukashchuk, M. Karpov, W. Weng, E. Lucas, J. Liu, and T. J. Kippenberg, “Massively parallel coherent laser ranging using a soliton microcomb,” Nature 581, 164–170 (2020).
17. E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, J. Liu, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” Nat. Photonics 13, 31–35 (2019).
18. S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica 1(1), 10–14 (2014).
19. P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546, 274–279 (2017).
20. N. G. Pavlov, S. Koptyaev, G. V. Lihachev, A. S. Voloshin, A. S. Gorodnitskiy, M. V. Ryabko, S. V. Polonsky, and M. L. Gorodetsky, “Narrow-linewidth lasing and soliton Kerr microcombs with ordinary laser diodes,” Nat. Photonics 12, 694–698 (2018).
21. A. S. Raja, A. S. Voloshin, H. Guo, S. E. Agafonova, J. Liu, A. S. Gorodnitskiy, M. Karpov, N. G. Pavlov, E. Lucas, R. R. Galiev, A. E. Shitikov, J. D. Jost, M. L. Gorodetsky, and T. J. Kippenberg, “Electrically pumped photonic integrated soliton microcomb,” Nat. Commun. 10, 680 (2019).
22. B. Shen, L. Chang, J. Liu, H. Wang, Q.-F. Yang, C. Xiang, R. N. Wang, J. He, T. Liu, W. Xie, J. Guo, D. Kinghorn, L. Wu, Q.-X. Ji, T. J. Kippenberg, K. Vahala, and J. E. Bowers, “Integrated turnkey soliton microcombs,” Nature 582(7812), 365–369 (2020).
23. A. S. Voloshin, N. M. Kondratiev, G. V. Lihachev, J. Liu, V. E. Lobanov, N. Y. Dmitriev, W. Weng, T. J. Kippenberg, and I. A. Bilenko, “Dynamics of soliton self-injection locking in optical microresonators,” Nat. Commun. 12, 235 (2021).
24. G. Lin, S. Diallo, R. Henriet, M. Jacquot, and Y. K. Chembo, “Barium fluoride whispering-gallery-mode disk-resonator with one billion quality-factor,” Opt. Lett. 39(20), 6009–6012 (2014).
25. H. Kudo, Y. Ogawa, T. Kato, A. Yokoo, and T. Tanabe, “Fabrication of whispering gallery mode cavity using crystal growth,” Appl. Phys. Lett. 102(21), 211105 (2013).
26. K. N. Minkov, “An apparatus for the manufacture of optical dielectric microresonators using a thermal method,” Instrum. Exp. Tech. 63(3), 421–424 (2020).
27. V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based optical frequency comb using soliton Cherenkov radiation,” Science 351(6271), 357–360 (2015).
28. A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A 70(5), 051804(R) (2004).
29. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Optical resonators with ten million finesse,” Opt. Express 15(11), 6768–6773 (2007).
30. S. Azami, H. Kudo, Y. Mizumoto, T. Tanabe, J. Yan, and Y. Kakinuma, “Experimental study of crystal anisotropy based on ultra-precision cylindrical turning of single-crystal calcium fluoride,” Precis. Eng. 40, 172–181 (2015).
31. A. E. Shitikov, I. A. Bilenko, N. M. Kondratiev, V. E. Lobanov, A. Markosyan, and M. L. Gorodetsky, “Billion Q-factor in silicon WGM resonators,” Optica 5(12), 1525–1528 (2018).
32. A. E. Shitikov, O. V. Benderov, N. M. Kondratiev, V. E. Lobanov, A. V. Rodin, and I. A. Bilenko, “Microresonator and laser parameter definition via self-injection locking,” Phys. Rev. Appl. 14(6), 064047 (2020).
33. S. Goel, A. Agrawal, and R. L. Reuben, “Diamond machining of silicon: a review of advances in molecular dynamics simulation,” Int. J. Mach. Tools Manuf. 88, 131–164 (2015).