DOI: 10.17586/1023-5086-2021-88-07-12-17
УДК: 681.7.069.24
Energy-efficient source of pulsed laser radiation based on a ring delay line
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Алексеев В.А., Зарипов М.Р., Юран С.И., Усольцев В.П. Энергоэффективный источник импульсного лазерного излучения на кольцевой линии задержки // Оптический журнал. 2021. Т. 88. № 7. С. 12–17. http://doi.org/10.17586/1023-5086-2021-88-07-12-17
Alekseev V.A., Zaripov M.R., Yuran S.I., Usoltsev V.P. Energy-efficient source of pulsed laser radiation based on a ring delay line [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 7. P. 12–17. http://doi.org/10.17586/1023-5086-2021-88-07-12-17
V. A. Alekseev, M. R. Zaripov, S. I. Yuran, and V. P. Usol’tsev, "Energy-efficient source of pulsed laser radiation based on a ring delay line," Journal of Optical Technology. 88(7), 360-363 (2021). https://doi.org/10.1364/JOT.88.000360
The structural scheme and operation principle of a system with a synchronous incoherent combination of laser pulses in a ring delay line are presented. An analysis of the effectiveness of such systems is performed for the case of quartz or polymer optical fibers acting as ring delay lines, where radiation at wavelengths of 450, 532, 650, 850, 1310, or 1550 nm circulate. The dependences of the maximum coefficient of energy efficiency on the repetition rate of the initial laser pulses are obtained. The system is shown to achieve energy efficiency when the repetition rate of the initial pulses exceeds a certain cutoff frequency, which lies within the range from a single kilohertz to tens of meghertz.
peak power, optical delay line, energy efficiency, incoherent combination of laser beams
OCIS codes: 140.3298, 060.2340
References:1. A. A. Andreev, “Superstrong light (achievements and prospects),” J. Opt. Technol. 85(11), 671–678 (2018) [Opt. Zh. 85(11), 19–28 (2018)].
2. G. Chang and Z. Wei, “Ultrafast fiber lasers: an expanding versatile toolbox,” iScience 23(5), 101101 (2020).
3. T. Bartulevicius, L. Veselis, K. Madeikis, A. Michailovas, and N. Rusteika, “Compact femtosecond 10 μJ pulse energy fiber laser with a CFBG stretcher and CVBG compressor,” Opt. Fiber Technol. 45, 77–80 (2018).
4. I. V. Obronov, A. S. Demkin, and D. V. Myasnikov, “Solid-state Yb:YAG amplifier pumped by a single-mode laser at 920 nm,” Quantum Electon. 48(3), 212–214 (2018).
5. S. S. Aleshkina, D. S. Lipatov, T. A. Kochergina, V. V. Velmiskin, V. L. Temyanko, L. V. Kotov, T. L. Bardina, M. M. Bubnov, A. N. Guryanov, and M. E. Likhachev, “All-fibre single-mode small-signal amplifier operating near 0.976 μm,” Quantum Electon. 49(10), 919–924 (2019).
6. A. Motes, Laser Beam Combining (AM Photonics, Rio-Rancho, 2015).
7. V. A. Alekseev, A. S. Perminov, and S. I. Yuran, “Increasing the peak power of a pulsed laser source using optical delay lines,” J. Opt. Technol. 85(12), 746–751 (2018) [Opt. Zh. 85(12), 8–14 (2018)].
8. V. A. Alekseev, M. R. Zaripov, A. S. Perminov, E. A. Sitnikova, V. P. Usoltsev, and S. I. Yuran, “Increasing the pulsed laser source peak power by use of a ring fiber-optic delay line,” Prib. Metody Izmer. 10(2), 151–159 (2019).
9. Y. Bai, G. Lei, H. Chen, X. Feng, D. Li, and J. Bai, “Incoherent space beam combining of fiber-transmitted semiconductor lasers for oil well laser perforation,” IEEE Access 7, 154457–154465 (2019).
10. G. Yang, L. Liu, Z. Jiang, T. Wang, and J. Guo, “Incoherent beam combining using fast steering mirrors,” J. Mod. Opt. 64(3), 251–258 (2016).
11. L. B. Glebov, D. Drachenberg, O. Andrusyak, G. Venus, V. Smirnov, and J. Lumeau, “Ultimate efficiency of spectral beam combining by volume Bragg gratings,” Appl. Opt. 52(30), 7233–7242 (2013).
12. N. R. Van Zandt, S. J. Cusumano, R. J. Bartell, S. Basu, J. E. McCrae, Jr., and S. T. Fiorino, “Comparison of coherent and incoherent laser beam combination for tactical engagements,” Opt. Eng. 51(10), 104301 (2012).
13. A. Brignon, Coherent Laser Beam Combining (Wiley-VCH, Weinheim, 2013).
14. Y. Yang, C. Geng, F. Li, G. Huang, and X. Li, “Multi-aperture all-fiber active coherent beam combining for freespace optical communication receivers,” Opt. Express 25(22), 27519–27532 (2017).
15. A. P. Bogatov, A. E. Drakin, and G. T. Mikaelyan, “Coherent combining of diode laser beams in a master oscillator—zigzag slab power amplifier system,” Quantum Electron. 49(11), 1014–1018 (2019).
16. V. A. Alekseev, S. I. Yuran, A. S. Perminov, V. P. Usol’tsev, and M. R. Zaripov, “Source of pulsed laser emission,” Russian patent 189439 (2019).
17. N. N. Slepov, “Optical fiber as a transmission medium,” in Fiber-Optic Equipment: Current State and New Prospects, S. A. Dmitriev and N. N. Slepov, eds. (Tekhnosphera, Moscow, 2010), pp. 25–50.
18. O. Ziemann, J. Krauser, P. E. Zamzow, and W. Daum, POF Handbook: Optical Short Range Transmission Systems (Springer-Verlag, Berlin, 2008).
19. Thorlabs, “Graded-index polymer optical fiber (GI-POF),” https://www.thorlabs.com/catalogPages/1100.pdf.
20. N. V. Nikonorov and A. I. Sidorov, Materials and Technology of Fiber Optics: Special Optical Fibers (SPbGU ITMO, St. Petersburg, 2009).