DOI: 10.17586/1023-5086-2021-88-07-18-22
УДК: 535, 617.7, 628.9
Influence of retarded Kerr effect on the intense femtosecond laser propagating in the atmosphere at different pressures
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
L. Wang, Q. Zhao, W. Sun, L. Wang Influence of retarded Kerr effect on the intense femtosecond laser propagating in the atmosphere at different pressures (Влияние задержанного эффекта Керра на распространение интенсивного фемтосекундного лазерного импульса в атмосфере при различном давлении) [на англ. яз.] // Оптический журнал. 2021. Т. 88. № 7. С. 18–22. http://doi.org/10.17586/1023-5086-2021-88-07-18-22
L. Wang, Q. Zhao, W. Sun, L. Wang Influence of retarded Kerr effect on the intense femtosecond laser propagating in the atmosphere at different pressures (Влияние задержанного эффекта Керра на распространение интенсивного фемтосекундного лазерного импульса в атмосфере при различном давлении) [in English] // Opticheskii Zhurnal. 2021. V. 88. № 7. P. 18–22. http://doi.org/10.17586/1023-5086-2021-88-07-18-22
L. Wang, Q. Zhao, W. Sun, and L. Wang, "Influence of the retarded Kerr effect on an intense femtosecond laser propagating in the atmosphere at different pressures," Journal of Optical Technology. 88(7), 364-367 (2021). https://doi.org/10.1364/JOT.88.000364
In this paper, we employ a 2D+1 propagation model to study the influence of retarded Kerr effect on the intense femtosecond laser pulse propagating in the atmosphere at different pressures. The numerical simulations show that the increase in pressure weakens the ability of the delayed Kerr effect to reduce the maximum value of the on-axis laser intensity and enhances the ability of the delayed Kerr effect to increase the self-focusing distance.
retarded Kerr effect, pressure, laser intensity, self-focusing
Acknowledgements:This work was supported by the talent introduction project of Anhui science and technology university (Grant Nos. DQYJ202004 and DQYJ202005), Anhui Natural Science Foundation (Grant No. 2008085QF328), university collaborative innovation project of Anhui province (Grant No. GXXT-2019-018).
OCIS codes: 190.0190, 190.3270
References:1. Chiron A., Lamouroux B., Lange R., Ripoche J.F., Franco M., Prade B., Bonnaud G., Riazuelo G., Mysyrowicz A. Numerical simulations of the nonlinear propagation of femtosecond optical pulses in gases // Eur. Phys. J. D. 1999. V. 6. № 3. P. 383–396.
2. Kudryashov S.I. Microscopic model of electronic Kerr effect in strong electric fields of intense femtosecond laser pulses // Quantum Electronics and Laser Science Conf. IEEE, 2005. P. 1639–1641.
3. Nurhuda M., Suda A., Midorikawa K. Generalization of the Kerr effect for high intensity, ultrashort laser pulses // New. J. Phys. 2008. V. 10. № 5. P. 456–460.
4. Wahlstrand J.K., Cheng Y.H., Milchberg H.M. Absolute measurement of the transient optical nonlinearity in N2, O2, N2O, and Ar // Phys. Rev. A. 2012. V. 85. № 4. P. 1073–1079.
5. Li S.Y., Guo F.M., Song Y., Chen A.M., Yang Y.J., and Jin M.X. Influence of group-velocity-dispersion effects on the propagation of femtosecond laser pulses in air at different pressures // Phys. Rev. A. 2014. V. 89. № 2. P. 023809.
6. Qi X., Ma C., Lin W. Pressure effects on the femtosecond laser filamentation // Opt. Commun. 2016. V. 358. P. 126–131.
7. Xi T.T., Lu X., Zhang J. Interaction of light filaments generated by femtosecond laser pulses in air // Phys. Rev. Lett. 2006. V. 96. P. 025003.
8. Xi T.T., Lu X., Zhang J. Spatiotemporal moving focus of long femtosecond-laser filaments in air // Phys. Rev. E. 2008. V. 78. P. 055401.
9. Tzortzakis S., Bergé L., Couairon A., Franco M., Prade B., and Mysyrowicz A. Breakup and fusion of selfguided femtosecond light pulses in air // Phys. Rev. Lett. 2001. V. 86. P. 5470.
10. Fill E.E. Focusing limits of ultrashort laser pulses: Analytical theory // JOSA B. 1994. V. 11. № 11. P. 2241–2245.
11. Nibbering E.T.J., Grillon G., Franco M.A., Prade B.S., Mysyrowicz A. Determination of the inertial contribution to the nonlinear refractive index of air, N2, and O2 by use of unfocused high-intensity femtosecond laser pulses // JOSA B. 1997. V. 14. № 13. P. 650–660.
12. Mlejnek M., Wright E.M., Moloney J.V. Dynamic spatial replenishment of femtosecond pulses propagating in air // Opt. Lett. 1998. V. 23. № 5. P. 382–384.
13. Blow K.J., Wood D. Theoretical description of transient stimulated Raman scattering in optical fibers // IEEE. J. Quantum Electron. 1990. V. 25. № 12. P. 2665–2673.
14. Scalora M., Crenshaw M.E. A beam propagation method that handles reflections // Opt. Commun. 1994. V. 108. P. 191–196.
15. Kewitsch A.S., Yariv A. Self-focusing and self-trapping of optical beams upon photopolymerization // Opt. Lett. 1996. V. 21. № 1. P. 24–26.
16. Dawes E.L., Marburger J.H. Computer studies in self-focusing // Phys. Rev. 1969. V. 179. № 3. P. 862–868.
17. Marburger J. Self-focusing: Theory // Prog. Quantum Electron. 2012. V. 4. № 1. P. 35–110.
18. Wang L., Ma C.L., Qi X.X., and Lin W.B. The impact of the retarded Kerr effect on the laser pulses propagation in air // Eur. Phys. J. D. 2015. V. 69. P. 72.
19. Ma C., Lin W. Normal dispersion effects on the nonlinear focus // JOSA B. 2016. V. 33. № 6. P. 1055–1059.