DOI: 10.17586/1023-5086-2021-88-07-23-27
УДК: 681.7.055.33, 681.7.055.32, 681.7.08
Holographic calibration setup based on a set of reference kits comprising axial computer-generated holograms and base test plates
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Лукин А.В., Курт В.И., Мельников А.Н., Садрутдинов А.И., Янковский А.А. Голографическая поверочная установка на основе комплекта эталонных наборов в составе осевых синтезированных голограмм и основных пробных стекол // Оптический журнал. 2021. Т. 88. № 7. С. 23–27. http://doi.org/10.17586/1023-5086-2021-88-07-23-27
Lukin A.V., Kurt V.I., Melnikov A.N., Sadrutdinov A.I., Yankovskyi A.A. Holographic calibration setup based on a set of reference kits comprising axial computer-generated holograms and base test plates [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 7. P. 23–27. http://doi.org/10.17586/1023-5086-2021-88-07-23-27
A. V. Lukin, V. I. Kurt, A. N. Mel’nikov, A. I. Sadrutdinov, and A. A. Yankovskii, "Holographic calibration setup based on a set of reference kits comprising axial computer-generated holograms and base test plates," Journal of Optical Technology. 88(7), 368-371 (2021). https://doi.org/10.1364/JOT.88.000368
A solution for the relevant metrological issue of the control and calibration of contact and contactless measurement equipment used in modern optical manufacturing is proposed. It is based on using a reference kit comprising an axial computer-generated hologram and a pair of spherical test plates with extremely high matching.
holographic calibration setup, reference kit, axial computer-generated hologram, pair of base test plates, control, calibration, precision replication
OCIS codes: 220.4840, 120.6650, 120.4630, 120.3180, 090.1970, 090.2890, 220.4610
References:1. M. A. Okatov, E. A. Antonov, A. Baigozhin, et al. Optical Technologist’s Handbook (Politekhnika, St. Petersburg, 2004).
2. GOST 2782–82, “Test plates for assessing radii and shapes of spherical optical surfaces. Specifications.”
3. GOST 1807–75, “Radii of spherical surfaces of optical components. Ranges of numerical values.”
4. GOST R 8.744–2011/ISO/TR 14999–3:2005, “State system for ensuring the uniformity of measurements. Optics and photonics. Interference measurements of optical components and systems. Part 3. Calibration and certification of interferometers, method for measurement of optical wavefronts.”
5. D. D. Maksutov, Fabrication and Investigation of Astronomical Optics (Nauka, Moscow, 1984), pp. 16–18.
6. A. V. Lukin and A. N. Melnikov, “Basic test plates: two new and relevant uses in optical technologies,” Fotonika 14(1), 68–74 (2020).
7. A. F. Belozyorov, N. P. Larionov, A. V. Lukin, and A. N. Melnikov, “On-axis computer-generated hologram optical elements: history of development and use, Part 1,” Fotonika (4), 12–32 (2014).
8. A. F. Belozyorov, N. P. Larionov, A. V. Lukin, and A. N. Melnikov, “On-axis computer-generated hologram optical elements: history of development and use, Part 2,” Fotonika (5), 30–41 (2014).
9. A. V. Lukin, “Holographic optical elements,” J. Opt. Technol. 74(1), 65–70 (2007) [Opt. Zh. 74(1), 80–87 (2007)].
10. OST 3–4730–80–OST 3–4732–80, “Optical components with aspherical surfaces. Method for control using computer-generated holograms.”
11. A. V. Lukin, A. N. Mel’nikov, V. I. Kurt, and A. I. Sadrutdinov, “Holographic device for measurement of radii of curvature of spherical surfaces,” Russian patent 200617 (2020).
12. A. V. Lukin, “The coherent properties of laser sources in interferometry and holography,” J. Opt. Technol. 79(3), 194–197 (2012) [Opt. Zh. 79(3), 91–96 (2012)].
13. A. V. Lukin, “Wavefront: some issues related to its reconstruction and shaping in holography and diffraction optics,” Fotonika 13(5), 462–467 (2019).
14. M. Born and E. Wolf, Principles of Optics (Nauka, Moscow, 1970), p. 859.
15. A. V. Lukin and A. N. Mel’nikov, “Base test plates as reference master molds for serial and mass production of spherical mirrors and lenses,” J. Opt. Technol. 87(8), 485–486 (2020) [Opt. Zh. 87(8), 49–51 (2020)].