DOI: 10.17586/1023-5086-2021-88-07-41-48
УДК: 681.7.013.8
Features of the development of an analyzing unit for measuring the line spread function and modulation transfer function of IR optical systems
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Леонов М.Б., Губина А.И. Особенности разработки анализирующего узла для измерения функции рассеяния линии и функции передачи модуляции оптических систем инфракрасного диапазона // Оптический журнал. 2021. Т. 88. № 7. С. 41–48. http://doi.org/10.17586/1023-5086-2021-88-07-41-48
Leonov M.B., Gubina A.I. Features of the development of an analyzing unit for measuring the line spread function and modulation transfer function of IR optical systems [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 7. P. 41–48. http://doi.org/10.17586/1023-5086-2021-88-07-41-48
M. B. Leonov and A. I. Gubina, "Features of the development of an analyzing unit for measuring the line spread function and modulation transfer function of IR optical systems," Journal of Optical Technology. 88(7), 380-385 (2021). https://doi.org/10.1364/JOT.88.000380
This paper discusses features of the development of scanning-type analyzing units with a single-element photodetector for measuring the line spread function and modulation transfer function (MTF) of infrared (IR) optical systems, taking into account the requirements of the State Standard GOST R 58566-2019 “Optics and photonics. Objectives for optoelectronic systems. Test methods.” Techniques are proposed for energy calculations and for determining the measurement error of the MTF of a measurement apparatus with a scanning-type analyzing unit.
objectives, optical measurements, line-spread function, modulation transfer coefficient, modulation transfer function
OCIS codes: 120.4630, 120.4800
References:1. M. Y. Shul’man, Measuring the Transfer Functions of Optical Systems (Mashinostroenie, L.O., Leningrad, 1980).
2. M. B. Leonov, I. A. Kupriyanov, D. A. Seregin, S. S. Churikov, and E. S. Terletskiy, “Hardware and software system for measuring the quality characteristics of infrared optical systems,” J. Opt. Technol. 86(7), 452–455 (2019) [Opt. Zh. 86(7), 74–78 (2019)].
3. GOST R 58566-2019, “Optics and photonics. An objective for optoelectronic systems. Experimental methods,” 2019.
4. A. Lengwenus and P. Erichsen, “MTF measurement of infrared optical systems,” Proc. SPIE 7481, 74810V (2009).
5. E. Y. Vasil’eva, V. A. Gorshkov, and V. A. Churilin, “Multispectral apparatus based on an off-axis mirror collimator for monitoring the quality of optical systems,” Nauchno-Tekh. Zh. Kontenant 14(1), 82–85 (2015).
6. G. G. Ishanin, É. D. Pankov, A. L. Andreev, and G. V. Pol’shchikov, Radiation Sources and Detectors (Politekhnika, St. Petersburg, 1991).
7. OST 3-2635-82, “Devices for measuring the MTF of collector objectives. Test method.”
8. “Device for measuring the modulation transfer coefficient (optical bench OS-2000VD), test method MP 085.M44-18, https://fgis.gost.ru/fundmetrology/registry/4/items/666983.
9. GOST R 8.736-2011, “Multiple direct measurements. Methods of processing measurement results. Basic assumptions.”