ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2021-88-07-49-56

УДК: 538.958

Structure and optical properties of Er-doped transparent glass–ceramics based on ZnO nanocrystals with anomalous light scattering

For Russian citation (Opticheskii Zhurnal):

Шепилов М.П., Дымшиц О.С., Алексеева И.П., Хубецов А.А., Шемчук Д.В., Жилин А.А. Структура и оптические свойства активированных ионами эрбия стеклокерамик на основе нанокристаллов ZnO и аномальное рассеяние света в них // Оптический журнал. 2021. Т. 88. № 7. С. 49–56. http://doi.org/10.17586/1023-5086-2021-88-07-49-56

 

Shepilov M.P., Dymshits O.S., Alekseeva I.P., Hubetsov A.A., Shemchuk D.V., Zhilin A.A. Structure and optical properties of Er-doped transparent glass–ceramics based on ZnO nanocrystals with anomalous light scattering [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 7. P. 49–56. http://doi.org/10.17586/1023-5086-2021-88-07-49-56

For citation (Journal of Optical Technology):

M. P. Shepilov, O. S. Dymshits, I. P. Alekseeva, A. A. Hubetsov, D. V. Shemchuk, and A. A. Zhilin, "Structure and optical properties of Er-doped transparent glass–ceramics based on ZnO nanocrystals with anomalous light scattering," Journal of Optical Technology. 88(7), 386-390 (2021). https://doi.org/10.1364/JOT.88.000386

Abstract:

This paper reports a study of the structure and optical spectra of glass–ceramics of the potassium–zinc–aluminosilicate system doped with Er3+ ions and containing ZnO nanocrystals. The volume fractions and sizes of the crystals are determined, the optical-density spectra are recorded, and the extinction-coefficient spectra are obtained for glass–ceramics created as a result of a series of successive isothermal heat treatments at 720°C and 750°C. The extinction coefficient is resolved into two terms, one of which describes the extinction caused by the presence of free carriers in the ZnO semiconductor crystals, while the second term describes the scattering and intrinsic absorption of light by these crystals. It is shown that the light scattering has an anomalous character: the dependence of the scattering coefficient on the inverse wavelength is described by a power function with an exponent that substantially exceeds the Rayleigh value of 4, while the measured scattering coefficient is appreciably less than that calculated for independent Rayleigh scatterers.

Keywords:

glass–ceramics, ZnO nanocrystals, light scattering, interference effects

Acknowledgements:

The research was partially supported by RFBR, grant No. 19-03-00855.

OCIS codes: 160.4670, 160.5690,160.4760, 290.5850,260.3160

References:

1. W. Höland and G. H. Beall, Glass-Ceramic Technology (Wiley, New Jersey, 2012), p. 271.
2. V. Marghussian, Nano-Glass Ceramics: Processing, Properties and Applications (Elsevier, Amsterdam, 2015), p. 64.
3. M. P. Shepilov, O. S. Dymshits, and A. A. Zhilin, “Light scattering in glass–ceramics: revision of the concept,” J. Opt. Soc. Am. B 35(7), 1717–1724 (2018).
4. D. I. Levin, “Rayleigh scattering in glasses and the structure of glass,” in The Structure of Glass: Transactions of the Conference on the Structure of Glass, A. A. Lebedev, ed. (Izd. Akad. Nauk SSSR, Moscow–Leningrad, 1955), pp. 198–201.
5. M. M. Gurevich, “Spectral dependence of light scattering in sodium–borosilicate glasses,” in The Structure of Glass: Transactions of the Conference on the Structure of Glass, A. A. Lebedev, ed. (Izd. Akad. Nauk SSSR, Moscow–Leningrad, 1955), pp. 202–206.
6. A. I. Kolyadin, “Anomalous scattering of light in glass,” Dokl. Akad. Nauk SSSR 109(1), 64–67 (1956).
7. A. I. Kolyadin, “Anomalous scattering of light in glass,” Opt. Spektrosk. 1(7), 907–916 (1956).
8. N. S. Andreev, “Scattering of visible light by glasses undergoing phase separation and homogenization,” J. Non-Cryst. Sol. 30(2), 99–126 (1978).
9. M. P. Shepilov, “Asymmetry parameter for anomalous scattering of light in nanostructured glasses,” Opt. Lett. 42(21), 4513–4516 (2017).
10. M. P. Shepilov, “Angular distribution of light scattered by nanostructured glass predicted from experimental wavelength dependence of turbidity,” OSA Continuum 1(3), 939–952 (2018).
11. M. P. Shepilov, “Extremely low light scattering in nanostructured glasses formed by simultaneous nucleation and diffusion-limited growth of particles: modeling,” Opt. Lett. 45(13), 3645–3648 (2020).
12. L. R. Pinckney, “Transparent glass-ceramics based on ZnO crystals,” Phys. Chem. Glass. Eur. J. Glass, Sci. Technol. B 47(2), 127–130 (2006).
13. Y. Yu, Y. Wang, D. Chen, P. Huang, E. Ma, and F. Bao, “Enhanced emissions of Eu3+ by energy transfer from ZnO quantum dots embedded in SiO2 glass,” Nanotechnology 19(5), 055711 (2008).
14. Q. Luo, X. Qiao, X. Fan, and X. Zhang, “Near-infrared emission of Yb3+ through energy transfer from ZnO to Yb3+ in glass–ceramic containing ZnO nanocrystals,” Opt. Lett. 36(15), 2767–2769 (2011).
15. J. Bang, H. Yang, and P. H. Holloway, “Enhanced luminescence of SiO2 :Eu3+ by energy transfer from ZnO nanoparticles,” J. Chem. Phys. 123(8), 084709 (2005).
16. O. M. Ntwaeaborwa and P. H. Holloway, “Enhanced photoluminescence of Ce3+ induced by an energy transfer from ZnO nanoparticles encapsulated in SiO2 ,” Nanotechnology 16(6), 865–868 (2005).
17. Y. Yu, D. Chen, P. Huang, H. Lin, and Y. Wang, “Structure and luminescence of Eu3+ -doped glass ceramics embedding ZnO quantum dots,” Ceram. Int. 36(3), 1091–1094 (2010).
18. G. M. Arzumanyan, E. A. Kuznetsov, A. A. Zhilin, O. S. Dymshits, D. V. Shemchuk, I. P. Alekseeva, A. V. Mudryi, V. D. Zhivulko, and O. M. Borodavchenko, “Photoluminescence of transparent glass-ceramics based on ZnO nanocrystals and co-doped with Eu3+ , Yb3+ ions,” Opt. Mater. 62, 666–672 (2016).
19. B. Ghaemi, G. Zhao, S. Huang, J. Wang, and G. Han, “Structural and luminescence properties of Er-doped zinc-alumino silicate glass ceramic,” J. Am. Ceram. Soc. 95(6), 1911–1914 (2012).
20. P. Loiko, O. Dymshits, A. Volokitina, I. Alekseeva, D. Shemchuk, M. Tsenter, A. Bachina, A. Khubetsov, E. Vilejshikova, P. Petrov, A. Baranov, and A. Zhilin, “Structural transformations and optical properties of glass-ceramics based on ZnO, β- and α-Zn2 SiO4 nanocrystals and doped with Er2 O3 and Yb2 O3 : Part I. The role of heat treatment,” J. Lumin. 202, 47–56 (2018).
21. J. Zhou, B. Song, H. Qin, W. Lu, G. Zhao, Z. Huang, and G. Han, “Color-tunable and white emission of Tm3+ -doped transparent zinc silicate glass-ceramics embedding ZnO nanocrystals,” J. Am. Ceram. Soc. 103(2), 1010–1017 (2020).
22. “MAUD: Materials Analysis Using Diffraction,” http://maud.radiographema.eu/.
23. M. P. Shepilov, “Calculation of kinetics of metastable liquid–liquid phase separation for the model with simultaneous nucleation of particles,” J. Non-Cryst. Solids 146, 1–25 (1992).
24. A. Agrawal, S. H. Cho, O. Zandi, S. Ghosh, R. W. Johns, and D. J. Milliron, “Localized surface plasmon resonance in semiconductor nanocrystals,” Chem. Rev. 118(6), 3121–3207 (2018).
25. M. Duan, J. Wang, C. Liu, J. Xie, and J. Han, “Effects of SnO doping on the optical properties of ZnO in glass,” J. Non-Cryst. Solids 459, 32–35 (2017).
26. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983; Mir, Moscow, 1986).
27. X. Yang, “Electrical and optical properties of zinc oxide for scintillator applications,” Ph.D. dissertation (West Virginia University, 2008), https://researchrepository.wvu.edu/etd/2729.
28. A. Guinier and G. Fournet, Small-Angle Scattering of X-Rays (Wiley, New York, 1955).