DOI: 10.17586/1023-5086-2021-88-08-32-39
УДК: 535.4
Focusing the optical radiation emitted by systems based on photonic crystals
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Ветлужский А.Ю. Фокусировка оптического излучения системами на основе фотонных кристаллов // Оптический журнал. 2021. Т. 88. № 8. С. 32–39. http://doi.org/10.17586/1023-5086-2021-88-08-32-39
Vetluzhskiy A.Yu. Focusing the optical radiation emitted by systems based on photonic crystals [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 8. P. 32–39. http://doi.org/10.17586/1023-5086-2021-88-08-32-39
A. Yu. Vetluzhskiĭ, "Focusing the optical radiation emitted by systems based on photonic crystals," Journal of Optical Technology. 88(8), 429-434 (2021). https://doi.org/10.1364/JOT.88.000429
Methods for focusing electromagnetic radiation using two-dimensional photonic crystals are discussed. The main feature of the described methods is the use of structures of finite dimensions, which determine the feasibility and efficiency of focusing. In this case, the physical mechanisms underlying the considered methods of localizing the field in a limited region of space are significantly different. These mechanisms include the unusual reflection and refraction properties of metallic photonic crystals, which exhibit the properties of media with ultralow values of the refractive index at the frequencies of the first allowed zone, and diffraction effects at the edges of dielectric photonic crystal structures.
focusing, diffraction, photonic crystals, refractive index, collimators
Acknowledgements:The research was supported by the Ministry of science and higher education of RF (grant No. 075-15-2020-787).
OCIS codes: 050.5298; 050.1965
References:1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
2. S. Y. Vetrov, P. S. Pankin, and I. V. Timofeev, “The optical Tamm states at the interface between a photonic crystal and a nanocomposite containing core-shell particles,” J. Opt. 18(6), 65106 (2016).
3. K. Sakoda, Optical Properties of Photonic Crystals (Springer, 2005).
4. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
5. A. Yu. Vetluzhski˘ı and Yu. L. Lomuhin, “Excitation of the PIN layer,” Radio Eng. Electron. 49(3), 282–287 (2004).
6. C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater. 24, 4229–4248 (2012).
7. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
8. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
9. P. V. Parimi, W. T. Lu, P. Vodo, J. Sokoloff, J. S. Derov, and S. Sridhar, “Negative refraction and left-handed electromagnetism in microwave photonic crystals,” Phys. Rev. Lett. 92(12), 127401 (2004).
10. K. Guven, K. Aydin, K. B. Alici, C. M. Soukoulis, and E. Ozbay, “Spectral negative refraction and focusing analysis of a two-dimensional left-handed photonic crystal lens,” Phys. Rev. B 70, 205125 (2004).
11. N. Fabre, S. Fasquel, C. Legrand, X. Mélique, M. Muller, M. François, O. Vanbésien, and D. Lippens, “Towards focusing using photonic crystal flat lens,” Opto-Electron. Rev. 14, 225–232 (2006).
12. M. G. Silveirinha, P. A. Belov, and C. R. Simovski, “Sub-wavelength imaging at infrared frequencies using an array of metallic nanorods,” Phys. Rev. B 75, 035108 (2007).
13. M. I. Kotlyar, A. A. Triandaphilov, A. A. Kovalev, V. A. Soifer, M. V. Kotlyar, and L. O’Faolain, “Photonic crystal lens for coupling two waveguides,” Appl. Opt. 48(19), 3722–3730 (2009).
14. A. G. Nalimov and V. V. Kotlyar, “Subwavelength focus of light by a planar microlens,” J. Mod. Opt. 64(5), 478–483 (2017).
15. X. Lin, X. Zhang, L. Chen, M. Solja ˇci ´c, and X. Jiang, “Super-collimation with high frequency sensitivity in 2D photonic crystals induced by saddle-type van Hove singularities,” Opt. Express 21(25), 30140–30147 (2013).
16. S. Gao, Y. Dou, Q. Li, and X. Jiang, “Tunable photonic crystal lens with high sensitivity of refractive index,” Opt. Express 25(6), 07112–07122 (2017).
17. A. Yu. Vetluzhski˘ı, “Effective electrophysical properties of metal electromagnetic crystals,” J. Radio Electron. (1) (2015).