ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2021-88-08-40-47

УДК: 621.397

Condition diagnosing easel tempera paintings by the high-resolution optical coherence tomography method

For Russian citation (Opticheskii Zhurnal):

Волынский М.А. Гладкова Е.С., Гуров И.П., Жукова Е.В., Маргарянц Н.Б., Сирро С.В., Скаков С.П. Диагностика состояния предметов станковой темперной живописи методом оптической когерентной томографии высокого разрешения // Оптический журнал. 2021. Т. 88. № 8. С. 40–47. http://doi.org/10.17586/1023-5086-2021-88-08-40-47

 

Volynskiy M.A., Gladkova E.S., Gurov I.P., Zhukova E.V., Margaryants N.B., Sirro S.V., Skakov P.S. Condition diagnosing easel tempera paintings by the high-resolution optical coherence tomography method [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 8. P. 40–47. http://doi.org/10.17586/1023-5086-2021-88-08-40-47

For citation (Journal of Optical Technology):

M. A. Volynsky, E. S. Gladkova, I. P. Gurov, E. V. Zhukova, N. B. Margaryants, S. V. Sirro, and P. S. Skakov, "Condition diagnosing easel tempera paintings by the high-resolution optical coherence tomography method," Journal of Optical Technology. 88(8), 435-440 (2021). https://doi.org/10.1364/JOT.88.000435

Abstract:

Peculiarities of using optical coherence tomography for examining the condition of valuable paintings are considered. A full-field optoelectronic system for determination of the internal microstructure of inhomogeneous media with high resolution and operation speed using a Wiener adaptive filtering algorithm for dynamic signal processing in time-domain optical coherence tomography is presented. Examples of determination of specific features of the microstructure of antique easel tempera paintings, such as thickness of the varnish layer and characteristics of its craquelure, morphology of the subsequent overpaint of the author layer, and loss of the varnish-and-paint layer by shelling, for determining the condition of an art object are presented.

Keywords:

easel tempera painting, nondestructive investigation, optical coherence tomography, interference fringes envelope curve, Wiener filtering

Acknowledgements:

The part of this study involving the development of the method for investigation of the laboratory model of the OCT system and the algorithm for data processing was supported by the Russian Science Foundation (grant no. 19-79-10118). The part of this study related to the results of the experimental investigation of valuable easel tempera paintings was supported by the Government of the Russian Federation (project application 2020-220-085053) within the measure for the support of scientific research projects performed in Russian educational organizations of higher education, scientific institutions, and state scientific centers of the Russian Federation under the supervision of leading scientists.

OCIS codes: 180.3170, 110.4500, 070.2025

References:

1. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
2. W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19, 071412 (2014).
3. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).
4. A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and A. C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43, 2874–2883 (2004).
5. I. Gurov, “Signal processing methods in full-field optical coherence microscopy,” in Handbook of Full-Field Optical Coherence Microscopy: Technology and Applications, A. Dubois, ed. (Pan Stanford Publishing, New York, 2016), Chap. 5, pp. 183–222.
6. H. Liang, M. Cid, R. Cucu, G. M. Dobre, A. G. Podoleanu, J. Pedro, and D. Saunders, “En-face optical coherence tomography—a novel application of non-invasive imaging to art conservation,” Opt. Express 13(16), 6133–6144 (2005).
7. I. Gurov, N. Margaryants, and E. Zhukova, “Evaluation of art subjects implemented in the marquetry technique by the optical coherence microscopy method,” Strain 55, e12304 (2019).
8. I. P. Gurov and V. O. Kapranova, “Assessment of parameters of partially coherent interference fringes using the Wiener adaptive filtering method,” J. Opt. Technol. 87(11), 658–664 (2020) [Opt. Zh. 87(11), 31–40 (2020)].
9. I. P. Gurov and V. O. Kapranova, “Assessment of parameters of interference fringes using a modified algorithm for adaptive Wiener filtering,” J. Opt. Technol. 88(2), 77–82 (2021) [Opt. Zh. 88(2), 27–34 (2021)].