DOI: 10.17586/1023-5086-2021-88-08-48-53
УДК: 528.85/87
Application of artificial neural networks for the analysis of multispectral images
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Альес М.Ю., Антонов Е.А., Калугин А.И., Зарипов М.Р. Применение искусственных нейронных сетей для анализа мультиспектральных изображений // Оптический журнал. 2021. Т. 88. № 8. С. 48–53. http://doi.org/10.17586/1023-5086-2021-88-08-48-53
Alies M.Yu., Antonov E.A., Kalugin A.I., Zaripov M.R. Application of artificial neural networks for the analysis of multispectral images [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 8. P. 48–53. http://doi.org/10.17586/1023-5086-2021-88-08-48-53
M. Yu. Alies, E. A. Antonov, A. I. Kalugin, and M. R. Zaripov, "Application of artificial neural networks for the analysis of multispectral images," Journal of Optical Technology. 88(8), 441-444 (2021). https://doi.org/10.1364/JOT.88.000441
A model of a multispectral camera that can capture images at five wavelengths—532, 612, 780, 850, and 940 nm—is designed and fabricated. The obtained multispectral images are analyzed. Algorithms of artificial neural network operation in the processing of multispectral images are discussed. A convolutional neural network for identification and classification of multispectral images in real-time is developed.
multispectral images, convolutional neural networks, image analysis, image classification, machine learning
Acknowledgements:This study was conducted within the research project of Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences “Artificial intelligence in design, training, and support of expert systems for presentation and utilization of knowledge in scientific, technical, and socio-humanistic fields” AAAA-A19-119092690104-4.
The authors are grateful to U. A. Efimova and G. M. Sharanova for their technical assistance in this study.
OCIS codes: 110.4234, 110.2960, 100.4996
References:1. S. Li, W. Song, L. Fang, Y. Chen, P. Ghamisi, and J. A. Benediktsson, “Deep learning for hyperspectral image classification: an overview,” IEEE Trans. Geosci. Remote Sens. 57(9), 6690–6709 (2019).
2. Y. Chen, Z. Lin, X. Zhao, G. Wang, and Y. Gu, “Deep learning-based classification of hyperspectral data,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7(6), 2094–2107 (2014).
3. Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi, “Deep feature extraction and classification of hyperspectral images based on convolutional neural networks,” IEEE Trans. Geosci. Remote Sens. 54(10), 6232–6251 (2016).
4. K. Makantasis, K. Karantzalos, A. Doulamis, and N. Doulamis, “Deep supervised learning for hyperspectral data classification through convolutional neural networks,” in IEEE International Geoscience and Remote Sensing Symposium (2015), pp. 4959–4962.
5. N. Audebert, B. Saux, and S. Lefevre, “Deep learning for classification of hyperspectral data: a comparative review,” IEEE Geosci. Remote Sens. Mag. 7(2), 159–173 (2019).
6. F. Melgani and L. Bruzzone, “Classification of hyperspectral remote sensing images with support vector machines,” IEEE Trans. Geosci. Remote Sens. 42(8), 1778–1790 (2004).
7. G. M. Foody and A. Mathur, “A relative evaluation of multiclass image classification by support vector machines,” IEEE Trans. Geosci. Remote Sens. 42(6), 1335–1343 (2004).
8. Z. He, M. Shen, Q. Zhang, Y. Wang, R. Wang, and Y. Yu, “Spectralspatial hyperspectral image classification via SVM and superpixel segmentation,” in 2014 IEEE International Instrumentation and Measurement Technology Conference (2014), pp. 422–427.
9. S. A. Bibikov, N. L. Kazanskii, and V. A. Fursov, “Vegetation type recognition in hyperspectral images using a conjugacy indicator,” Comput. Opt. 42(5), 846–854 (2018).
10. D. A. Landgrebe, Signal Theory Methods in Multispectral Remote Sensing (Wiley, New York, 2003).