ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2021-88-08-67-74

УДК: 535-31, 53.047

Inactivation of microorganisms by vacuum ultraviolet radiation

For Russian citation (Opticheskii Zhurnal):

Зверева Г.Н., Кирцидели И.Ю. Инактивация микроорганизмов под действием вакуумного ультрафиолетового излучения // Оптический журнал. 2021. Т. 88. № 8. С. 67–74. http://doi.org/10.17586/1023-5086-2021-88-08-67-74  

Zvereva G.N., Kirtsideli I.Yu. Inactivation of microorganisms by vacuum ultraviolet radiation [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 8. P. 67–74. http://doi.org/10.17586/1023-5086-2021-88-08-67-74

For citation (Journal of Optical Technology):

G. N. Zvereva and I. Yu. Kirtsedeli, "Inactivation of microorganisms by vacuum ultraviolet radiation," Journal of Optical Technology. 88(8), 454-459 (2021). https://doi.org/10.1364/JOT.88.000454

Abstract:

We describe the effects of vacuum ultraviolet light (λ=173nm) on the microfungus species Cladosporium herbarum, Rhodotorula colostri, and Saccharomyces cerevisiae. The survival probability was found to depend on the fungus concentration in the sample, which indicates that a shadowing effect may be responsible. The survival probabilities of the microfungi during the exponential growth phase were independent of fungus species, and this may result from insufficient accumulation of protective pigment in the cell wall. Infrared spectroscopy and atomic force microscopy of irradiated samples show breakdown of sugars and proteins in the cell wall. Electrophoresis revealed double-strand breaks in the DNA of Rhodotorula colostri but not Cladosporium herbarum, which may be because the latter produces the protective pigment melanin. When antioxidants (GSH, I2, KI) were added to the culture medium, the microfungi showed improved survival probability, indicating that an indirect mechanism is contributing to the inactivation process. The contribution of this indirect mechanism reached 50% for energy densities of 5−20mJ/cm2.

Keywords:

vacuum ultraviolet, ·OH radical, DNA, microfungus

Acknowledgements:

This work was performed partially under a government task order under the long-term plan of the V. L. Komarov Botanical Institute for Topic No. AAAA-A19-119020890079-6, a part of the work was performed on equipment provided by the V. L. Komarov Botanical Institute Center for Collective Use of Cellular and Molecular Technology for Studying Plants and Fungi.

OCIS codes: 260.7210, 170.1420, 170.1530

References:

1. G. Heit, A. Neuner, P.-Y. Saugy, and A. M. Braun, “Vacuum-UV (172 nm) actinometry. The quantum yield of the photolysis of water,” J. Phys. Chem. A 102, 5551–5561 (1998).
2. R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. H. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, and J. Troe, “Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I–gas phase reactions of Ox , HOx , NOx , and SOx species,” Atmos. Chem. Phys. 4, 1461–1738 (2004).
3. B. D. Michael, K. M. Prise, M. Folkard, B. Vojnovic, B. Brocklehurst, I. H. Munro, and A. Hopkirk, “Action spectra for single- and double-strand break induction in plasmid DNA: studies using synchrotron radiation,” Int. J. Radiat. Biol. 66, 569–572 (1994).
4. H. R. Dickinson and C. Johnson, “Optical properties of sugars. II. Vacuum-ultraviolet absorption of model compounds,” J. Am. Chem. Soc. 96, 5050–5054 (1974).
5. T. Inagaki, R. N. Hamm, E. T. Arakawa, and R. D. Birkhoff, “Optical property of bovine plasma albumin between 2 and 82 eV,” Biopolymers 14, 839–847 (1975).
6. K. D. Weltmann, E. Kindel, T. von Woedtke, M. Hähnel, M. Stieber, and R. Brandenburg, “Atmospheric-pressure plasma sources: prospective tools for plasma medicine,” Pure Appl. Chem. 82, 1223–1237 (2010).
7. G. Horneck, D. M. Klaus, and R. L. Mancinelli, “Space microbiology,” Microbiol. Mol. Biol. Rev. 74, 121–156 (2010).
8. T. Ito, A. Ito, K. Hieda, and K. Kobayashi, “Wavelength dependence of inactivation and membrane damage to Saccharomyces cerevisiae cells by monochromatic synchrotron vacuum-UV radiation (145–190 nm),” Rad. Res. 96, 532–548 (1983).
9. E. Sarantopoulou, A. Stefi, Z. Kollia, D. Palles, P. S. Petrou, A. Bourkoula, G. Koukouvinos, A. D. Velentzas, S. Kakabakos, and A. C. Cefalas, “Viability of Cladosporium herbarum spores under 157 nm laser and vacuum ultraviolet irradiation, low temperature (10 K) and vacuum,” J. Appl. Phys. 116, 104701 (2014).
10. O. V. Kamzolkina and Ya. E. Dunaevskii, Biology of the Fungal Cell (Tovarishchestvo Nauchnykh Izdanii KMK, Moscow, 2018).
11. J. L. Weeks, G. M. A. C. Meaburn, and S. Gordon, “Absorption coefficients of liquid water and aqueous solutions in the far ultraviolet,” Rad. Res. 19, 559–567 (1963).
12. N. P. Blinov, G. A. Vitkovskaya, V. G. Kaloshin, and T. M. Kolotinskaya, “Structural polysaccharides in several Rhodotorula and Cryptococcus species,” Biokhimiya 39(4), 787–792 (1974).
13. I. G. Paulino-Lima, S. Pilling, E. Janot-Pacheco, A. N. de Brito, J. A. R. G. Barbosa, A. C. Leitão, and C. de A. S. Lage, “Laboratory simulation of interplanetary ultraviolet radiation (broad spectrum) and its effects on Deinococcus radiodurans,” Planet. Space Sci. 58, 1180–1187 (2010).
14. G. Zvereva, I. Kirtsideli, E. Machs, and A. Vangonen, “Mechanisms of the effect of VUV radiation on the microfungi,” Proc. SPIE. 10614, 106141S (2018).
15. R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77, 13–19 (1981).
16. L. Lin and J. Xu, “Fungal pigments and their roles associated with human health,” J. Fungi 6, 280 (2020).
17. V. I. Biryuzova, Ultrastructural Organization of the Yeast Cell (Nauka, Moscow, 1993).
18. O. V. Sverdlova, Electron Spectra in Organic Chemistry (Khimiya, Leningrad, 1985).
19. M. N. Kiseleva, N. M. Tsyganenko, T. M. Smirnova, N. Yu, and Dodonova, “Photolysis of total histone and DNA of the plasmid pBr-322 in the vacuum ultraviolet region of the spectrum,” Biofizika 34(4), 536–540 (1989).
20. K. Takakura, M. Ishikawa, and T. Ito, “Action spectrum for the induction of single-strand breaks in DNA in buffered aqueous solution in the wavelength range from 150 to 272 nm: dual mechanism,” Int. J. Radiat. Biol. 52, 667–675 (1987).
21. V. L. Bugaenko and V. M. Byakov, “Quantitative model for the radiolysis of liquid water and dilute aqueous solutions of hydrogen, oxygen, and hydrogen peroxide: I. Statement of the model,” High Energy Chem. 32(6), 365–371 (1998) [Khim. Vys. Energ. 32(6), 407–414 (1998)].

22. N. A. Porter, “Mechanisms for the autoxidation of polyunsaturated lipids,” Acc. Chem. Res. 19, 262–268 (1986).
23. C. Aceves, B. Anguiano, and G. Delgado, “The extrathyronine actions of iodine as antioxidant, apoptotic, and differentiation factor in various tissues,” Thyroid 23(8), 938–946 (2013).
24. G. N. Zvereva, I. Y. Kirtsidely, E. M. Machs, and E. Y. Letova, “Indirect action of VUV radiation on micro-organisms,” Proc. SPIE 11322, 113222M (2019).