ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2021-88-08-75-80

УДК: 532.783, 53.04, 535.016

Effect of WS2 nanoparticles on the refractive properties of liquid crystal compositions

For Russian citation (Opticheskii Zhurnal):

Тойкка А.С., Ломова Л.С., Каманина Н.В. Влияние наночастиц WS2 на рефрактивные свойства жидкокристаллических композиций // Оптический журнал. 2021. Т. 88. № 8. С. 75–80. http://doi.org/10.17586/1023-5086-2021-88-08-75-80

 

Toikka A.S., Lomova L.S., Kamanina N.V. Effect of WS2 nanoparticles on the refractive properties of liquid crystal compositions [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 8. P. 75–80. http://doi.org/10.17586/1023-5086-2021-88-08-75-80

For citation (Journal of Optical Technology):

A. S. Toikka, L. S. Lomova, and N. V. Kamanina, "Effect of WS2 nanoparticles on the refractive properties of liquid crystal compositions," Journal of Optical Technology. 88(8), 460-463 (2021). https://doi.org/10.1364/JOT.88.000460

Abstract:

The spectral dependences of the refractive index of liquid crystal compositions sensitized with different concentrations of tungsten disulfide (WS2) nanotubes are considered in the present study in the visible spectral range. A correlation between the refractive index and the dynamic properties of liquid crystal cells is established. The characteristics of laser-induced breakdown under the influence of a pulsed laser with a wavelength of 1.54 µm are also considered. The concentration of the WS2 nanoparticles doping the liquid crystal mesophase, at which the phase transition to a quasi-smectic state occurs, was determined. This finding significantly enhances the application range of liquid crystal cells in optoelectronic systems.

Keywords:

liquid crystals, liquid crystal ellipsometry, nanostructuring, WS2 nanotubes, quasi-smectics, birefringency

Acknowledgements:

The authors are grateful to A. V. Kandakov (engineer at IMP RAS, St. Petersburg, Russia), Professor R. Tenne (Weizmann Institute of Science, Rehovot, Israel), and their colleagues at the Laboratory for Photophysics of Media with Nano-Objects at the Vavilov State Optical Institute for productive applied science seminars and support at each stage of research. The results were partially discussed at scientific-technical seminars at the Petersburg Nuclear Physics Institute of the National Research Center “Kurchatov Institute” (Gatchina, Russia) in 2019 and 2020.

OCIS codes: 160.3710, 230.3720, 190.0190

References:

1. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford Science Publications, Oxford, 1995).
2. R. S. McEwen, “Liquid crystals, displays and devices for optical processing,” J. Phys. E: Sci. Instrum. 20(1), 364–377 (1987).
3. L. Zhou, M. H. Saeed, and L. Zhang, “Optical diffusers based on uniform nano-sized polymer balls/nematic liquid crystals composite films,” Liq. Cryst. 47(5), 785–798 (2019).
4. Y. Isomae, S. Aso, J. Shibasaki, K. Aoshima, K. Machida, H. Kikuchi, T. Ishinabe, Y. Shibata, and H. Fujikake, “Superior spatial resolution of surface-stabilized ferroelectric liquid crystals compared to nematic liquid crystals for wide-field-of-view holographic displays,” Jpn. J. Appl. Phys. 59(4), 040901 (2020).
5. A. Choudhary, T. F. George, and G. Li, “Conjugation of nanomaterials and nematic liquid crystals for futuristic applications and biosensors,” Biosensors 8(3), 69 (2018).
6. C. Y. Fan, T. J. Chuang, K. H. Wu, and G.-D. Su, “Electrically modulated varifocal metalens combined with twisted nematic liquid crystals,” Opt. Express 28(7), 10609–10617 (2020).
7. H. Chen, F. Gou, and S. T. Wu, “Submillisecond-response nematic liquid crystals for augmented reality displays,” Opt. Mater. Express 7(1), 195–201 (2017).
8. R. Mazur, W. Piecek, Z. Raszewski, P. Morawiak, K. Garbat, O. Chojnowska, M. Mrukiewicz, M. Olifierczuk, J. Kedzierski, R. Dabrowski, and D. Weglowska, “Nematic liquid crystal mixtures for 3D active glasses application,” Liq. Cryst. 44(2), 417–426 (2017).
9. W. Fuscaldo, S. Tofani, D. C. Zografopoulos, P. Baccarelli, P. Burghignoli, R. Beccherelli, and A. Galli, “Tunable Fabry–Perot cavity THz antenna based on leaky wave propagation in nematic liquid crystals,” IEEE Antennas Wireless Propag. Lett. 16(1), 2046–2049 (2017).
10. Q. Wang, X. C. Zhang, H. W. Tian, W. X. Jiang, D. Bao, H. L. Jiang, Z. J. Luo, L. T. Wu, and T. J. Cui, “Millimeter-wave digital coding metasurfaces based on nematic liquid crystals,” Adv. Theory Simul. 2, 1900141 (2019).
11. N. V. Kamanina, V. N. Sizov, and D. I. Stasel’ko, “Recording of thin phase holograms in polymer-dispersed liquid-crystal compositesbased on fullerene-containing p-conjugated organic systems,” Opt. Spectrosc. 90(1), 1–3 (2001).
12. N. V. Kamanina, “Nonlinear optical properties of polymerdispersed liquid-crystalline systems based on fullerene-doped 2-cyclooctylamino-5-nitropyridine,” Opt. Spectrosc. 93(4), 639–642 (2002).
13. N. V. Kamanina, A. V. Komolkin, and N. P. Yevlampieva, “Variation of the orientational order parameter in a nematic liquid crystal–COANP–C70 composite structure,” Tech. Phys. Lett. 31(6), 478–480 (2005).
14. P. Y. Vasilyev and N. V. Kamanina, “Fullerene-containing liquid crystal spatiotemporal light modulators with surface-electromagnetic-wave-treated conducting layers,” Tech. Phys. Lett. 33(1), 8–10 (2007).
15. N. V. Kamanina, Y. M. Voronin, I. V. Kityk, A. Danel, and E. Gondek, “Spectroscopy of PVK-phenyl derivatives disturbed the long-range ordering of liquid crystalline phase,” Spectrochim. Acta, Part A 66(3), 781–785 (2007).
16. N. V. Kamanina, S. V. Serov, Y. Bretonniere, and C. Andraud, “Organic systems and their photorefractive properties under the nano- and biostructuration: scientific view and sustainable development,” J. Nanomater. 2015, 278902 (2015).
17. N. V. Kamanina, Y. A. Zubtcova, A. A. Kukharchik, C. Lazar, and I. Rau, “Control of the IR-spectral shift via modification of the surface relief between the liquid crystal matrixes doped with the lanthanide nanoparticles and the solid substrate,” Opt. Express 24(2), A270–A275 (2016).
18. G. Pathak, R. Katiyar, K. Agrahari, A. Srivastava, R. Dabrowski, K. Garbat, and R. Manohar, “Analysis of birefringence property of three different nematic liquid crystals dispersed with TiO2 nanoparticles,” Opto-Electron. Rev. 26(1), 11–18 (2018).
19. C. Y. Huang, P. Selvaraj, G. Senguttuvan, and C. J. Hsu, “Electro-optical and dielectric properties of TiO2 nanoparticles in nematic liquid crystals with high dielectric anisotropy,” J. Mol. Liq. 286, 110902 (2019).
20. C. J. Hsu, L. J. Lin, M. K. Huang, and C.-Y. Huang, “Electro-optical effect of gold nanoparticle dispersed in nematic liquid crystals,” Crystals 7(10), 287 (2017).
21. S. J. Shivaraja, R. K. Gupta, S. Kumar, and V. Manjuladevi, “Effect of functionalised silver nanoparticle on the elastic constants and ionic transport of a nematic liquid crystal,” Liq. Cryst. 46(12), 1868–1876 (2019).
22. D. N. Chausov, A. D. Kurilov, A. V. Kazak, A. I. Smirnova, V. K. Velichko, E. V. Gevorkyan, N. N. Rozhkova, and N. V. Usol’tseva, “Dielectric properties of liquid crystalline composites doped with nano-dimensional fragments of shungite carbon,” Liq. Cryst. 46(9), 1345–1352 (2019).
23. E. Petrescu and C. Cirtoaje, “Dynamic behavior of a nematic liquid crystal with added carbon nanotubes in an electric field,” Beilstein J. Nanotechnol. 9(1), 233–241 (2018).
24. L. M. Blinov, Electro-optics and Magnetooptics of Liquid Crystals (Nauka, Moscow, 1978).
25. A. A. Vasiliev, D. Kasasent, I. N. Kompanets, and A. V. Parfenov, Spatial Light Modulators (Radio i Svyaz’, Moscow, 1987).
26. N. V. Kamanina, “Fullerene-dispersed liquid crystal structure: dynamic characteristics and self-organization processes,” Phys.-Usp. 48(4), 419–427 (2005).
27. N. V. Kamanina, Y. A. Zubtsova, A. S. Toikka, S. V. Likhomanova, A. Zak, and R. Tenne, “Temporal characteristics of liquid crystal cell with WS2 nanoparticles: mesophase sensitization and relief features,” Liq. Cryst. Their Appl. 20(1), 34–40 (2020).
28. A. S. Toikka and N. V. Kamanina, “Liquid crystals electro-optical structure with conducting layers modified by carbon nanotubes,” J. Phys.: Conf. Ser. 1695, 012071 (2020).
29. N. V. Kamanina, Y. A. Zubtcova, P. V. Kuzhakov, A. Zak, and R. Tenne, “Correlations between spectral, time and orientation parameters of liquid crystal cells with WS2 nanoparticles,” Liq. Cryst. Their Appl. 20(3), 41–48 (2020).
30. R. Tenne, L. Margulis, M. Genut, and G. Hodes, “Polyhedral and cylindrical structures of tungsten disulfide,” Nature 360(6403), 444–446 (1992).
31. S. S. Sinha, A. Zak, R. Rosentsveig, I. Pinkas, R. Tenne, and L. Yadgarov, “Size-dependent control of exciton–polariton interactions in WS2 nanotubes,” Small 16(4), 1904390 (2020).
32. Y. Zhang, T. Ideue, M. Onga, F. Qin, R. Suzuki, A. Zak, R. Tenne, J. H. Smet, and Y. Iwasa, “Enhanced intrinsic photovoltaic effect in tungsten disulfide nanotubes,” Nature 570(7761), 349–353 (2019).
33. R. Basu and A. Lee, “Ion trapping by the graphene electrode in a graphene-ITO hybrid liquid crystal cell,” Appl. Phys. Lett. 111, 161905 (2017).
34. X. Yan, F. W. Mont, D. J. Poxson, M. F. Schubert, J. K. Kim, J. Cho, and E. F. Schubert, “Refractive-index-matched indium–tin-oxide electrodes for liquid crystal displays,” Jpn. J. Appl. Phys. 48, 120203 (2009).
35. N. Kamanina, A. Toikka, and I. Gladysheva, “ITO conducting coatings properties improvement via nanotechnology approach,” Nano Express 2(1), 010006 (2021).